Search:  

Division of Environmental Physics - User: veronika
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava


Evaluation of oxidative species in gaseous and liquid phase generated by mini-gliding arc discharge

Pawlat J., Terebun P., Kwiatkowski M., Tarabová B., Kovaľová Z., Kučerová K., Machala Z., Janda M., Hensel K.
Plasma Chem. Plasma Process. 39 (3), 627-643 (2019)

download  


Abstract:

Titanium dioxide aerogel (TiAP) powders were prepared by lyophilization of peroxo-polytitanic gels followed by annealing at 800 °C to obtain anatase structure. The surface modification of TiAP was performed for the first time by low extents of Ce ions (in the range from 0.0025 to 0.025 wt%) using a wet impregnation method. Photocatalytic activity of the aerogel samples was investigated in the removal of different organic pollutants (i.e., Rhodamine B, phenol and caffeine) and compared to the reference P25. Both TiAP and Ce ions surface-modified TiAP (Ce/TiAP) have exhibited better degradation efficiencies of pollutants than P25, especially for Ce/TiAP with an enhancement of +18 % and +37 % in the removal of caffeine and Rhodamine B, respectively. These results have been partly explained by the high active surface area of Ce/TiAP compared to TiAP as well as its better photo-electrochemical properties which have shown, for instance, ~10 % increased incident photon-to-electron conversion efficiency at 360 nm. Interestingly, the energy band gap of TiAP and Ce/TiAP is similar (Eg = 3.25 eV), but the position of the valence band maximum of Ce/TiAP is shifted from 3.2 eV to 2.8 eV, thus improving the generation of reactive oxygen species (ROS), especially hydroxyl radicals. Indeed, the presence of HO• is confirmed by electron paramagnetic resonance, and fluorescence spectroscopy and their photo-induced generation are enhanced in the case of Ce/TiAP. Finally, the surface modification of TiAP by cerium ions led to better photo-induced properties, thus limiting the electron-hole pair recombination, but also to the improvement of ROS generation via different plausible mechanisms.


Citations:

1.)V. Medvecká, S. Omasta, M. Klas, S. Mošovská, S. Kyzek, A. Zahoranova: Plasma activated water prepared by different plasma sources: physicochemical properties and decontamination effect on lentils sprouts, Plasma Sci. Technol. 24, 015503 (2022), citation no. X, WoS
(2022)
-------------
2.)Z. Duan, M. Hu, S. Jiang, G. Du, X. Zhou, T. Li: Cocuring of Epoxidized Soybean Oil-Based Wood Adhesives and the Enhanced Bonding Performance by Plasma Treatment of Wood Surfaces, ACS Sustainable Chem. Eng. 10 (10), 3363-3372 (2022), citation no. X, INDEX
(2022)
-------------
3.)A. Mai-Prochnow, D. Alam , R. Zhou, T. Zhang, K. (Ken) Ostrikov, P. J. Cullen: Microbial decontamination of chicken using atmospheric plasma bubbles, Plasma Process. Polym. 18 (1), 2000052 (2020), citation no. 19, INDEX
(2021)
-------------
4.)Y.D. Korolev, I.A. Shemyakin, V.S. Kasyanov, V. G. Geyman, N. V. Landl, A. V. Bolotov: Transient processes during an initial stage of breakdown in saline solution, J. Appl. Phys. 129, 043304 (2021), citation no. 18, INDEX
(2021)
-------------
5.)P. S. Ganesh Subramanian, J. Ananthanarasimhan, P. Leelesh, R. Harsha, A. M. Shivapuji, P.–L. Girard-Lauriault, R. Lakshminarayana: Plasma-activated water from DBD as a source of nitrogen for agriculture: Specific energy and stability studies editors-pick, J. Appl.Phys. 129, 093303 (2021), citation no.20, INDEX
(2021)
-------------
6.)B. G. Salamov: Charge Transport Mechanisms in the Silver-Modified Zeolite Porous Microstructure, In: S. J. Ikhmayies, H. H. Kurt (Eds.): Advances in Optoelectronic Materials, Spinger (2021), citation no. X
(2021)
-------------
7.)J. Thati, A. M. Adepu, A. H. Raza, D. Ankathi, V. Gongalla: Influence of Feeding Gases on the Composition of Plasma Activated Water, Adv. J. Grad. Res. 10 (1), 23-32 (2021), citation no. 17
(2021)
-------------
8.)I. M. Piskarev: Features of the Impact of Pulsed Radiation of Hot Plasma on Water and Aqueous Solutions, Plasma Chem. Plasma Process. X, xxx (2021), citation no. 20, INDEX
(2021)
-------------
9.)A. Dickenson, J. L. Walsh, M. I. Hasan: Electromechanical coupling mechanisms at a plasma–liquid interface, J. Appl. Phys. 129, 213301 (2021), citation no. 14, WoS
(2021)
-------------
10.)B. Onal-Ulusoy: Effects of Cold Atmospheric Gliding Arc Discharge Plasma, Non-thermal Ultrasound, and Low-Temperature Oven Treatments on Quality Parameters of Turkish Blossom Honey, Food Bioprocess Technol. X, xxx (2021), citation no. X, INDEX
(2021)
-------------
11.)A. M. Diez-Pascual: Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO2 Nanocomposites, Polymers 13, 2445 (2021), citation no. X, WoS
(2021)
-------------
12.)K. Matra, Y. Tanakaran, V. Luang-In, S. Theepharaksapan: Enhancement of Lettuce Growth by PAW Spray Gliding Arc Plasma Generator, IEEE Trans. Plasma Sci. X, xxx (2021), citation no. 21, INDEX
(2021)
-------------
13.)H. D. Stryczewska: Supply Systems of Non-Thermal Plasma Reactors. Construction Review with Examples of Applications, Appl. Sci. 10, 3242 (2020), citation no. 52, WoS
(2020)
-------------
14.)V. Gamaleev, T. Tsutsumi, M. Hiramatsu, M. Ito, M. Hori: Generation and Diagnostics of Ambient Air Glow Discharge in Centimeter-Order Gaps, IEEE Access 8, 72607-72619 (2020), citation no. 35, WoS
(2020)
-------------
15.)V. Gamaleev, N. Iwata , G. Ito, M. Hori, M. Hiramatsu, M. Ito: Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications, Appl. Sci. 10, 801 (2020), citation no. 47, WoS
(2020)
-------------
16.)V. Gamaleev, N. Iwata, M. Hiramatsu, M. Ito: Tuning of operational parameters for effective production of nitric oxide using ambient air rotating glow discharge jet, Jpn. J. Appl. Phys. 59, SHHF04 (2020), citation no. 33, WoS
(2020)
-------------
17.)V. Gamaleev, N. Iwata, M. Hori, M. Hiramatsu, M. Ito: Direct Treatment of Liquids Using Low-Current Arc in Ambient Air for Biomedical Applications, Appl. Sci. 9 (17), 3505 (2019), citation no. 48, WoS
(2020)
-------------
18.)H. I. A. Qazi, Y.-Y. Xin, L. Zhou, J. J. Huang: Description of the physicochemical properties of a gas–liquid phase discharge under the Ar—N2 environment, AIP Advances 10, 095207 (2020), citation no. 35, WoS
(2020)
-------------
19.)V. Gamaleev, N. Britun, M. Hori: Control and Stabilization of Centimeter Scale Glow Discharge in Ambient Air Using Pulse-Width, IEEE Access 8, 201486- 201497 (2020), citation no. 35, INDEX
(2020)
-------------
20.)N. C. Roy, C. Pattyn, A. Remy, N. Maira, F. Reniers: NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions, Plasma Process. Polym. X, e2000087 (2020), citation no. 28, WoS
(2020)
-------------
21.)C. Paradisi, E. Marotta, B. R. Locke: Papers by Selected Lecturers at the 11th International Symposium on Non-thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy (ISNTPT 11), Plasma Chem. Plasma Process. 39 (3) 519-522 (2019), citation 14, WoS, SCOPUS
(2019)
-------------
22.)P. A. Mazurek: Analiza konfiguracji elektrod w odniesieniu do zaburzeń przewodzonych w reaktorze plazmowym, Przegląd Elektrotechniczny 95 (12) 176-179 (2019), citation no. 13, WoS
(2019)
-------------


HOME
STAFF
RESEARCH
PUBLICATIONS
STUDENTS
LINKS
CONTACT

PhD opportunities



 

User: veronika

Logout