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Abstract: One of the new methods of protecting and supporting plant growth is the use of low-
temperature plasma. The aim of this study is to evaluate the feasibility of using plasma activated
water produced in an atmospheric pressure gliding arc reactor for germination of beetroot (Beta
vulgaris) and carrot (Daucus carota) seeds. The study was carried out for different plasma treatment
times of water (5, 10 and 20 min) and with fixed geometry and power of the discharge system, using
air as the working gas. The effect on germination was evaluated based on the fraction of germinated
seeds and their length at 7 and 14 days after treatment. Analysis of fungi present on the seed surface
and imaging of the seed surface using scanning electron microscopy (SEM) were auxiliary methods
to evaluate the type of treatment effect. In the case of beetroot, a positive effect on the number and
length of germinated seeds was observed, which increased with increasing treatment time. This
effect can be attributed, among other things, to the surface changes observed on microscopic pho-
tographs. In the case of carrot seeds, a more significant positive effect on germination was observed.
Fungal decontamination effect was relatively weaker than with the use of the chemical method with
sodium hypochlorite.

Keywords: plasma activated water (PAW); gliding arc discharge (GAD); germination; carrot seed;
beetroot seed

1. Introduction

Currently, one of the main tasks of plant protection is the implementation of innovative
and safe methods to reduce the occurrence of agrophages in crops [1,2]. This is related to
the implementation of the concept of sustainable agriculture, promoting the production
of high quality food in a socially responsible manner, rational use of natural resources
and a reduction in the use of chemical plant protection products [3–6]. Excessive and
careless use of pesticides contributes not only to resistant breeds of agrophages, but also to
environmental pollution and residues in the raw materials produced [7]. One alternative
method of pesticide-free crop protection may be plasma treatment. Plasma can affect
living cells through the action of active particles generated in the plasma (mainly reactive
oxygen and nitrogen species—RONS), the action of charged plasma particles, radiation
over a wide range of wavelengths, and shear stresses and drying [8–10]. The mechanism of
plasma action on harmful microorganisms is multistage and mainly involves permanent
damage of the cell wall, cytoplasmic membrane, and then intracellular structures, genetic
material and the enzyme apparatus [11–13]. Plasma can be used to decontaminate seed
and seedling material [14–22] and have positive effects on physiological processes in plants
and plant seedlings [23–32]. For example, the work of Jiang et al. indicated the effects
of low-temperature plasma on seed germination, seedling growth, root morphology, and
nutrient uptake in tomato [33]. Many researchers confirm the positive effect of plasma
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on the process of plant rooting especially on increasing the length and number of roots
formed [34,35].

One method of using plasma treatment may be to use plasma activated water (PAW),
which may contain active particles (such as dissolved ozone, hydrogen peroxide, nitrates,
nitrites, peroxynitrites, OH radicals, etc.) produced directly in the discharge or by their
reaction with water, depending on the type of discharge and the working gas used [36].
Then, PAW can be used to remove harmful organisms [37–45], either directly on growing
plants [46,47] or by aiding in the germination process [48,49]. From the perspective of
stability over time, hydrogen peroxide and lower pH in PAW are probably the most
influential factors in fungicidal activity. The treatment effect depends on both the discharge
parameters and the type of plant being treated. The purpose of this study is to evaluate
the feasibility of using PAW generated by a gliding arc discharge (GAD) to aid in the
germination of carrot and beetroot seeds. In addition to the results on the fraction of
germinated seeds and the length of sprouts, those obtained from surface imaging and the
analysis of the type and amount of fungi present on the seeds, conducted via scanning
electron microscopy (SEM), were also used to evaluate the effect of plasma. The results
were compared with one of the classic methods of plant decontamination—treatment with
sodium hypochlorite (NaOCl).

2. Materials and Methods
2.1. Treated Seeds

Edible carrot seeds of the AFALON F1 variety (Daucus carota, Moravo Seed Ożarów
Mazowiecki, Poland) and beetroot seeds of the CYLINDRA variety (Beta vulgaris, W.
Legutko, Jutrosin, Poland) were used in the research (Figure 1a). For each treatment
condition, 10 seeds were randomly selected, and the measurements were repeated 5 times.
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2.2. Plasma Activated Water

Plasma was generated in a single-phase gliding arc reactor (GAD) operating at atmo-
spheric pressure; this process has been described in greater detail in previous works [50,51].
The discharge system consisted of two copper electrodes, 2 mm thick and 80 mm long,
with an angle of 12◦ between them, placed in a glass tube with an inner diameter of
50 mm. The working gas (air) was blown out through the glass nozzle near the ignition
area with a flow rate of 7.33 dm3/min, adjustable with glass tube variable area flow meter
(Zakłady Automatyki “ROTAMETR”, Gliwice, Poland). The reactor was powered by an



Appl. Sci. 2021, 11, 6164 3 of 15

RMS (root-mean-square) voltage of 680 V (3.8 kV peak voltage), frequency of 50 Hz and
apparent power of 40 VA. To obtain plasma activated water, 20 mL of distilled water, at
22.6 ◦C, was placed in a glass vessel with a diameter of 60 mm and with a distance of
20 mm between the electrodes and the water surface (Figure 1b).

The water temperature after plasma treatment of 5, 10 and 20 min, measured with
a K-type thermocouple connected to the DT-847U meter (Yu Ching Technology, Taipei,
Taiwan), was 27 ◦C, 29.1 ◦C and 30.7 ◦C, respectively.

The colorimetric method using TiOSO4 (Titanium(IV) oxysulfate) solution (Merck,
Darmstadt, Germany) and colorimetric Griess assay (Cayman Chemicals, Ann Arbor,
USA) were used for the measurement of hydrogen peroxide (H2O2) and nitrites (NO2

−),
respectively. The obtained concentrations of active species increased with the plasma
treatment time and are summarized in Table 1. The GAD plasma source is able to generate
high concentrations of nitrogen reactive species but H2O2 concentration was low, which is
in a good accordance with previous data [50].

Table 1. Concentration of selected RONS.

Plasma Treatment
Time [min]

H2O2
[µM]

NO2−

[mM] pH

5 6 ± 1 1.9 ± 0.4 4.2 ± 0.2
10 7 ± 3 2.4 ± 0.3 3.7 ± 0.1
20 12 ± 5 2.9 ± 0.6 3.3 ± 0.3

2.3. Germination Rate

Immediately after the plasma treatment of water, the experiment with seeds was
carried out in three parts: first, the seeds were treated with PAW, e.g., water was poured
over 10 seeds of each species placed in glass flasks and left to soak for one hour. Then,
seeds were transferred to the Petri dishes with the mineral nutrient medium solution (the
composition of the solution is shown in Table 2). In the last step, mycological analysis
was performed.

Table 2. Composition of mineral medium.

Substance Quantity

Saccharose 38 g
Agar 20 g

NH4NO3 0.7 g
MgSO4 × 7 H2O 0.3 g

NH2PO4 0.3 g
FeCl3 × 7 H2O trace amounts

ZnSO4 × 7 H2O trace amounts
CuSO4 × 7 H2O trace amounts
MnSO4 × 7 H2O trace amounts

In order to compare plasma treatment with traditional decontamination methods, a
series of measurements was performed using a sodium hypochlorite. For this purpose,
10 seeds were sterilized in 10% NaOCl solution for 60 s and then washed 3 times for 3 min
in distilled water. NaOCl (POCH Odczynniki Chemiczne, Avantor, Poland) was diluted
to proper concentration on-site immediately before application. Seed samples from the
same batch were used for the tests. Then, the seeds were placed on the plates, similarly
to the plasma treatment and control. All seeds were in sterile growth mineral medium,
in the cultivation chamber with controlled atmosphere, under the following conditions:
20–22 ◦C without light with 65% humidity. The amount of germinated beet and carrot seeds
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was measured after 7 days for germination energy GEN and after 14 days for germination
capacity GC [52]. Both coefficients were then calculated from the following equation:

G =
n

nT
· 100% (1)

where: n—the number of seeds germinated at time t; nT—the total number of sown seeds.

2.4. Fungi on the Seed Surface

For additional series with the same treatment conditions, in the germination study
a mycological analysis was performed using the method of artificial cultures [53]. The
medium with the composition presented in Table 1 was supplemented with distilled water
to the volume of 1000 mL, and then sterilized for 20 min in an autoclave, at a temperature
of 121 ◦C and a pressure of 1 atmosphere. The dishes with the seeds lined up were placed
at 20–22 ◦C for 7 days without light. After one week, the plates were inspected, and the
grown fungus colonies were cleaved on slants with potato-glucose agar (PDA). Then,
segregation was performed on the basis of microscopic and macroscopic features. The
obtained fungal isolates were sorted and labeled according to species using studies, keys
and monographs [54–57].

2.5. Surface Imaging Using an Optical Microscope and SEM

Morphology of the seeds was evaluated using a KEYENCE VHX-5000 digital micro-
scope (Osaka, Japan). Images of the samples were taken immediately after one hour of the
seeds’ imbibition in plasma activated water.

For more detailed visualization of the surface of Beta vulgaris seeds after PAW treatment,
the treated samples were naturally dried for one hour and applied to the mounting surface
(carbon disc). A layer of gold (~15 nm) was then sputtered onto the samples for imaging
using a Phenom SEM microscope (Thermo Fisher Scientific, USA) at a voltage of 10 kV.

2.6. Statistical Analysis

StatSoft’s Statistica 8.0 software was used for the analysis of the experimental data.
Statistical differences between groups were examined with use of two-way analysis of
variance (ANOVA). Tukey’s test was used to analyze the significance of differences between
mean values (α ≤ 0.05). For the data obtained with measurement of the same objects at
different times, the results are correlated due to the use of the ANOVA Repeated Measures
Analysis of Variance.

3. Results and Discussion
3.1. Germination Rate

Beta vulgaris germination results for control, NaOCl and PAW (using 5, 10 and
20 min of GAD treatment of water as PAW5′, PAW10′ and PAW 20′) are summarized
in Figure 2. Compared to the control, which had a rather high variability within samples,
PAW treatment allowed for an increase in the average value of both GEN and GC. The
difference in germination energy was evident for PAW after 5 min of plasma treatment, for
which the fraction of germinated seeds increased by 16%, performing better than sodium
hypochlorite treatment. Similar GEN results were obtained for a time of 10 min plasma
treatment of water; however, this treatment time also allowed for an increase in GC, as
opposed to PAW5’, which had a shorter treatment time that accelerated initial growth
followed by no germination of the remaining seeds. The best results were obtained for
PAW with a treatment time of 20 min, for which all seeds from all samples germinated after
7 days. In the case of beetroot seeds, the highest ratio was obtained with the application of
water treated with plasma for 20 min; this was also the case for carrot seeds in combination
with sodium hypochlorite.
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The germination results obtained for Daucus carota are shown in Figure 3.
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Figure 3. Germination of Daucus carota (mean values and standard deviation).

For the tested seeds, the germination of the control samples was low and did not
exceed 10% even after 14 days. As the plasma treatment time increased, an increase in GEN
was evident, which more than doubled for a time of 20 min. However, the best results at
the end of the test (14 days) were obtained for PAW, which undergone plasma treatment
for shorter times (5 and 10 min), where the average GC value was almost three times higher
than the control sample. For the tested seeds, the best results were obtained for the sodium
hypochlorite treatment, although the results obtained from the different samples varied
quite significantly.

3.2. Sprout Length

In the case of the total length of sprouts, the highest results were obtained in both
plant species for seeds treated with sodium hypochlorite.
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The average sprout lengths from each experimental condition for Beta vulgaris are
shown in Figure 4.
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Figure 4. Sprout length of Beta vulgaris (mean values and standard deviation).

When comparing mean sprout lengths, after 7 days, each treatment type allowed
greater lengths, with a slightly greater advantage for PAW with 20 min plasma treatment
(a 46% increase over the control). After 14 days, the differences for the plasma treatment
are less noticeable (4 to 17% increase over the control), with a large increase in length for
the sodium hypochlorite treatment (32% increase with a relatively large difference between
the individual samples). As for the sprouts’ production at the 7th day of observation,
application of PAW5’ produced a visible improvement in the germination process. With an
extension in the observation time, the stimulation effect became weaker, and for 14 days
was clearly visible only for 20 min-treated PAW and NaOCl.

The results obtained for Daucus carota are shown in Figure 5.
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These seeds react in a slightly different manner than Beta vulgaris as a very weak
stimulative effect can be observed after 7 days of treatment; the best results were obtained
for sodium hypochlorite (250% increase), while PAW treatment was again the most effec-
tive, with the longest water treatment time with plasma (40% increase compared to the
control). Such a PAW still had relatively low concentration of H2O2, with decontamina-
tive properties and a reasonably high concentration of nitrites with known antimicrobial
properties, especially at the low pH, which together boosted plant’s growth and inhibited
the development of certain fungal colonies. Nitrites are known for their fertilizing prop-
erties and support further plant development. After 14 days, a very significant increase
in sprout length was noticeable for all types of treatment. For NaOCl, this was more than
a thirteenfold increase over the control. For PAW treatment, the best effect was obtained
for the shortest time of PAW treatment with plasma (650% increase), followed by 20 and
10 min of treatment (505% and 300% increase, respectively), which could be explained by
the attaining of a kind of balance between RONS and pH, with the location of the above
factors in a plant environmental tolerance zone. On the other hand, the germination boost
that was clearly visible for NaOCl treatment could be explained by a strong correlation
between the germination process and fungal decontamination, which is described in the
next chapter.

3.3. Statistical Analysis

Results of statistical analysis are depicted in Tables 3 and 4. The best results, with a
statistically significant change in the case of Beta vulgaris, were obtained for PAW, with a
treatment time of 20 min, for which all seeds, from all samples, germinated after 7 days.
For the tested Daucus carota seeds, the best results, with a statistically significant change,
were obtained for the sodium hypochlorite treatment, although the results obtained from
the different samples varied quite significantly.

Table 3. Statistical analysis of germination results. The letter indicators next to the means determine
the statistically homogeneous groups.

Beta Vulgaris Daucus Carota

GEN GC GEN GC

Control 0.78 b 0.9 ab 0.08 abcd 0.08 abcd

NaOCl 0.9 ab 0.94 ab 0.4 ef 0.42 f

PAW 5′ 0.94 ab 0.94 ab 0.06 ab 0.22 cdef

PAW 10′ 0.94 ab 0.98 a 0.1 ac 0.22 bdef

PAW 20′ 1.0 a 1.0 a 0.18 abcde 0.18 abcde

3.4. Fungi on the Seed Surface

Fungal infestations constitute a persistent problem for improperly stored seeds, which
brings losses of the seeding material, generates additional costs and is inappropriate from
a sustainable ecology point of view. During our observation of basic microbiota present
in the examined seeds, certain trends were observed when assessing the infestation of
seeds of selected species by fungi. The seeds were highly contaminated. With longer GAD
application times to water, a reduction in the number of fungi inhabiting the seeds can be
observed. A total of 13 fungal species were identified in Beta vulgaris. Colony counts for
each species and treatment condition are summarized in Table 5.



Appl. Sci. 2021, 11, 6164 8 of 15

Table 4. Results of statistical analysis.

Beta Vulgaris Daucus Carota

Germination rate
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Table 5. Fungal species on Beta vulgaris.

Species of Fungus Control NaOCl GA5′ GA10′ GA20′ Total

Alternaria alternata (Fr.) Keissl. 2 0 1 0 11 14
Aspergillus niger Tiegh 3 0 2 0 0 5
Botrytis cinerea Pers. 1 0 0 0 0 1

Chaetomium cochliodes Palliser 0 0 5 0 2 7
Clonostachys rosea (Link) Schroers 0 16 0 0 0 16

Epicoccum nigrum Link 0 0 10 8 0 18
Fusarium solani (Mart.) Sacc. 2 0 0 0 0 2

Penicillium expansum Link 0 0 0 1 2 3
Penicillium nigricans K.M. Zal. 1 0 2 0 0 3

Truncatella truncata Lev. 2 0 0 0 0 2
Trichoderma harzianum Rifai 0 4 1 0 1 6
Trichoderma koningii Oudem. 2 2 0 3 0 7

Trichothecium roseum (Pers.) Link 0 0 0 0 1 1
Total 13 22 21 12 17 85

In total, the largest numbers of colonies were observed for Epicoccum nigrum, Clonostachys
rosea and Alternaria alternata. Compared to the control, all PAW treatments eliminated fungi
such as Botrytis cinerea, Fusarium solani and Truncatella truncata with the same efficiency as the
sodium hypochlorite treatment. For Aspergillus niger, the reduction occurred only for PAW



Appl. Sci. 2021, 11, 6164 9 of 15

with a treatment time of 10 min. On the other hand, for some treatment times, more colonies
of Alternaria alternata, Epicoccum nigrum and Penicillium expansum were observed.

The results obtained for Daucus carota are summarized in Table 6.

Table 6. Fungal species on Daucus carota.

Species of Fungus Control NaOCl GA5′ GA10′ GA20′ Total

Alternaria alternata (Fr.) Keissl. 49 0 48 48 48 193
Alternaria radicina Meier, Drechsler & E.D. Eddy 7 4 0 0 0 11

Aspergillus niger Tiegh 2 6 2 0 2 12
Chaetomium cochliodes Palliser 0 0 1 0 0 1

Cladosporium sp. 0 15 0 0 0 15
Clonostachys rosea (Link) Schroers 0 2 0 0 0 2

Epicoccum nigrum Link 0 1 0 0 0 1
Fusarium avenaceum (Fr.) Sacc. 0 0 0 0 2 2

Mucor mucedo Fresen. 0 0 0 2 0 2
Penicillium expansum Link 0 0 0 0 3 3

Stemphylium botryosum Wallr. 0 12 0 0 0 12
Trichoderma harzianum Rifai 2 2 0 0 0 4
Trichoderma koningii Oudem. 0 0 0 1 0 1

Total 60 42 51 51 55 259

The highest number of colonies was observed for the Alternaria alternata species,
which was completely resistant to PAW treatment but was entirely removed by NaOCl.
On the other hand, high numbers of colonies were observed for the species Cladosporium
sp. and Stemphylium botryosum, which were only detected for the treatment with sodium
hypochlorite. This may result from the surface effect of PAW, the relatively low concen-
tration of disinfective hydrogen peroxide, and also from high primary contamination of
seeds, especially carrots, as a result of improper storage. PAW treatment resulted in a
complete reduction in Alternaria radicina and Trichoderma harzianum, which were present
in both control and NaOCl treated samples. It also caused a slight increase in Chaetomium
cochliodes, Fusarium avenaceum, Mucor mucedo, Penicillium expansum and Trichoderma koningii,
which usually occurred for longer processing times. In the case of the cheapest treatment
option for the feed gas (air), the RONS composition present in plasma activated water had
mild fungitoxic effects. Such a treatment strongly depended on the fungal species; thus,
positive point is a kind of treatment selectivity, which can be achieved using PAW. It has
to be pointed out that PAW reveals basic surface activity. However, in some cases, high
contamination, with the presence of pathogens that are located in the deeper zones of seeds,
also cannot be removed by traditional chemical treatment techniques such as NaOCl.

3.5. Surface Imaging Using an Optical Microscope and SEM

In order to emphasize the differences between two types of tested seeds and also
the differences visible in the obtained results, the seeds’ structures were described on
the basis of the literature data, and microscopic analyses were performed. Beta vulgaris
belongs to the complex Eudicots, with a perispermic seed structure. In this case, water and
oxygen penetration can be limited by thick, hard pericarp tissue surrounding the internal
botanical seed. Morphologically, an ovary cap with the remnants of the stigma covers
the pericarp’s upper part. On the opposite side of the seed, the basal pore is located in a
position that allows for water intake. Pericarp consists of three layers with different sizes
of crystalized chemical compounds, which tend to be bigger with depth. The first of two
dense internal sclerenchymal layers is formed of small, multilayer-wall sclereids, followed
by the second layer of thinner cell wall sclereids with crystal clusters inside, and the rather
loose parenchyma cells located externally. The analysis of water extract from the pericarp
revealed predominating cations such as potassium, sodium, magnesium, calcium, chlorine,
sulphur and anions with nitrate, phosphate, chloride and sulphate oxalate ions dominating,
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which form the osmotic potential within pericarp, which may cause delays in the seed
germination process [58–63].

When using both the optical microscope and the scanning electron microscope
(Figures 6 and 7), imaged samples are characterized by oval shaped parenchymal cells,
of random size, with a very developed, concaved structure. The cells are not densely
packed and intercellular spaces can be observed. After the PAW treatment, the structure
became folded and wrinkled, and also revealed signs of rupture in comparison to the
control sample. Changes are noticeable for PAW with 5 min of plasma treatment. On the
other hand, besides the undulating structure, longer times resulted in the flattening of the
outer edges of the cells.
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Carrot seeds are relatively small and they belong to the schizocarpic fruits. Their
external layer is formed by a thin seed coat and it has overhanging beards. Pericarp is
partially joined to the seed and consists of the epicarp, mesocarp and endocarp. The bulk
of the seed incorporates thick-walled endosperm tissue embodying an embryo [64–66].

As shown in Figure 8, on the weavy-ribbed top structure of the coat, the distinctive
elongating beards adjoined to the ribs are visible in the control sample. PAW treatment
caused visible changes such as enhanced swelling of the ribs and removal of beards. Beard
removal is also a common process during the scarification process of the carrot seeds,
which takes place in order to enhance germination and to save space during the seed
packaging process.
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Previous studies with the GAD reactor indicated that high concentrations of NOx can be
generated in the gas phase and further transported to the liquid phase, where compounds such
as H2O2 also appear through secondary reactions [50]. In the case of PAW treatment of seeds,
these compounds can cause an increase in germination, e.g., through H2O2 accumulation [48,49].
The increase in germination may also be related to other effects of plasma treatment on seeds,
such as surface etching and increased water absorption [67–69], or inactivation of harmful
organisms [16,70,71]. Many of these effects can also affect seeds through active particles
found in PAW, e.g., via H2O2 activating the catalase enzyme for the synthesis of new
proteins [26], increases in chlorophyll content [72], the cracking of hard seeds, thus allowing
them to absorb moisture [73] or the enhancement of nitrogen contents in the seeds through
adsorption, diffusion and trapping of RNS produced in plasmas [74]. Their effect can not
only be an increase in germination, but also an increase in the quality of the plants grown
and their levels of disease tolerance [75,76].

We speculate that the results of seeds’ imbibition in PAW, especially with the presence
of RONS and low pH, changed the osmotic potential and made the seed surface more
prone to structural changes.

On the basis of the results, it can be concluded that when using the same reactor and
the same treatment conditions, the results largely depend on the type of treated seeds.
In the case of Beta vulgaris, the effect of PAW treatment is evident in both the change of
microflora, germination parameters and surface structure of the tested seeds. Due to the
higher rate of germination (GEN), sprouts of greater length were obtained in addition to
a larger fraction of germinated seeds. Because of the relatively small decontamination
effect of fungi whose specific species were restricted or stimulated, the gradual increase
in treatment efficiency with increasing treatment time may be related to the change in
surface structure observed via optical and scanning electron microscopy. In the case of
Daucus carota, characterized by other types of fungi, a complete reduction in Alternaria
radicina and Trichoderma harzianum species, which were not removed during the classical
decontamination method with sodium hypochlorite, can be observed. Compared to the
control, significantly better germination and sprout length parameters were obtained
even for shortest time, but these were still worse than the results obtained for traditional
treatment with NaOCl. In combination with the overall better decontamination effect of
sodium hypochlorite, it can be thought that for carrot seeds, the decisive influence on
germination was connected with fungi on the surface, which is better removed by the
traditional method. However, the use of PAW may still offer a competitive alternative due
to the ecology and economy of plasma treatment with the investigated device, for which
only electricity and commonly available air are needed. PAW can be also generated in
larger quantities in devices of different constructions [77–79], which can further improve
the cost factor.

4. Conclusions

Plasma activated water positively influenced the seeds germination process; however,
differences between the plant species, in terms of the seeds’ response, were observed.
Longer PAW imbibition times resulted in better germination parameters in comparison
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to the control sample. For Beta vulgaris, treatment times of 10 and 20 min also allowed
a higher fraction of germinating seeds than NaOCl treatment, with only slightly shorter
average sprout lengths. For Daucus carota, the germination rate and sprout length were
both noticeably lower than for sodium hypochlorite solution, but still several times higher
compared to the control.

Plasma activated water had an impact on the composition of fungal species inhabiting
Beta vulgaris and Daucus carota seeds. Fungal species responded to the PAW treatment
in different manners; some of them were unaffected. The highest counts isolated were
assigned to the harmful producers of mycotoxins such as Alternaria alternata and moulds
of the genus Penicillium. The beneficial species were dominated by Epicoccum nigrum,
Clonostachys rosea and Trichoderma sp.

Author Contributions: Conceptualization: J.P., M.K. (Marek Kopacki) and K.H.; methodology: J.P.,
M.K. (Michał Kwiatkowski), P.T., M.K. (Marek Kopacki) and K.H.; investigation: J.P., P.T., M.K.
(Michał Kwiatkowski), M.K. (Marek Kopacki) and K.H. data curation: P.T., M.K. (Marek Kopacki)
and J.P., writing—original draft preparation: P.T. and J.P.; writing—review and editing: P.T., J.P. and
M.K. (Marek Kopacki); visualization: J.P., M.K. (Michał Kwiatkowski) and P.T.; supervision: J.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Polish–Slovak Bilateral Cooperation Programme (Plas-
maBioAgro) PPN/BIL/2018/1/00065+SK-PL-18-0090 and the LUT research fund (FD-20/EE-2/418).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We would like to thank Eng. Łukasz Kaca for the technical assistance during
selected research tasks and Łukasz Remez from PIK INSTRUMENTS Sp.z.O.O for the SEM docu-
mentation. We acknowledge fruitful discussion with COST Action PlAgri CA19110 and CEEPUS
CIII-AT-0063 members.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk,

P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [CrossRef]
2. Jamiolkowska, A.; Hetman, B.; Skwarylo-Bendarz, B.; Kopacki, M. Integrowana ochrona roślin w Polsce i Unii Europejskiej oraz
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