Citácie: 1.) | Pei X., Gidon D.; Graves D.B.:
Specific energy cost for nitrogen fixation as NOx using DC glow discharge in air; J. PHYS. D-APPL. PHYS. 53 (4) 044002 (2020), WoS (2020) ------------- | 2.) | Savkin K.P., Bugaev A.S., Gushenets V.I., Vizir A.V., Nikolaev A.G., Oks E.M., Yushkov G.Yu., Shandrikov M.V., Frolova V.P., Bin Z., Gao K.: Generation of atmospheric pressure plasma in molecular gasflows. In: J. Physics: Conference Series 1393 (1) (2019) 012052, SCOPUS (2019) ------------- | 3.) | Cejas E., Mancinelli B.R., Prevosto L.: Glow discharge in a high-velocity air flow: the role of the associative ionization reactions involving excited atoms. Materials, 12 (16) 2524 (2019), WoS, SCOPUS (2019) ------------- | 4.) | Golota V.I., Kudin D V., Manuilenko O. V., Taran G.V., Zavada L.M., Yegorov M.O., Khmelevskaya V.F.: Decomposition of ethelene in low temperature plasma of barrierless discharge. Problems Atomic Science Technology 4 (2018) 160-163, SCI (2018) ------------- | 5.) | Koc S.O., Galioglu S., Ozturk S., Kurc B.A., Koc E., Salamov B.G.: New mixed conductivity mechanisms in the cold plasma device based on silver-modified zeolite microporous electronic materials. J. Electronic Materials, 47 (5) 2018, 2791-2799, WoS, Scopus (2018) ------------- | 6.) | Wang Y.S., Ding W.D., Wang J.C., Ge C.J., Wang Y.N.: A diffusive atmospheric pressure glow discharge obtained by applying an external transverse magnetic field. Physics of Plasmas 25 (9) 2018, 093516; WoS, SCOPUS (2018) ------------- | 7.) | Wang Y.S., Ding W.D., Wang J.C., A stable and diffusive atmospheric pressure glow discharge in ambient air obtained by applying an axial magnetic field between pin-to-plate electrodes. Physics of Plasmas 25 (10) 2018, 103506; WoS, SCOPUS (2018) ------------- | 8.) | Wu D., Sun L., Liu P., Hai R., Ding H.: Enhancement of laser-induced breakdown spectroscopic signals in a liquid jet with glow discharge. Applied Spectroscopy, 72 (2) 2018, 225-233; WoS, SCOPUS (2018) ------------- | 9.) | S. Wu, W. Cheng, G. Huang, F. Wu, Ch. Liu, X. Liu, Ch. Zhang, and X. L, Positive streamer corona, single filament, transient glow, dc glow, spark, and their transitions in atmospheric air, Phys. Plasmas 25, 123507 (2018), WoS, SCOPUS (2018) ------------- | 10.) | C.D. Kong, J.L. Gao, J.J. Zhu, A. Ehn, M. Alden, ZS Li: Characterization of an AC glow-type gliding arc discharge in atmospheric air with a current-voltage lumped model, PHYS. PLASMAS 24 (9) 093515 (2017), WoS (2017) ------------- | 11.) | Y.S. Wang, W.D. Ding, J.Q. Yan, Y.N. Wang: A diffusive atmospheric pressure glow discharge in a coaxial pin-to-ring gap with a transverse magnetic field, AIP ADVANCES 7 (9) 095209 (2017), WoS cit. 3 (2017) ------------- | 12.) | N.N. Morgan, M. ElSabbagh: Hydrogen Production from Methane Through Pulsed DC Plasma, PLASMA CHEM. PLASMA PROCESS. 37 (5) 1375-1392 (2017), WoS (2017) ------------- | 13.) | L. Potocnakova, J. Sperka, P. Zikan, JJWA van Loon, J. Beckers, V. Kudrle: Experimental study of gliding arc plasma channel motion: buoyancy and gas flow phenomena under normal and hypergravity conditions, PLASMA SOURCES SCI. TECHNOL. 26 (4) 045014 (2017), WoS (2017) ------------- | 14.) | Akbari E., Enzevaee A., Karimi H., Ahmadi M.T., Buntat Z.: Graphene-based gas sensor theoretical framework. Handbook of Research on Nanoelectronic Sensor Modeling and Applications: Advances in Computer and ElectricalEngineering (ACEE) Book Series. Hersey: Igi Global (2017) 117-149 -BKCI-S, SCOPUS (2017) ------------- | 15.) | Ahmadi MT; Ismail R; Anwar S: HANDBOOK OF RESEARCH ON NANOELECTRONIC SENSOR MODELING AND APPLICATIONS; Book Series: Advances in Computer and Electrical Engineering (ACEE); XVIII-+ (2017) WoS (2017) ------------- | 16.) | Koseoglu K.; Salamov B.G.: New Approach for Charge Transport Mechanisms in the Atmospheric Pressure Cold Plasma Device with Porous Zeolite, PLASMA PROCESSES AND POLYMERS 13, 355-365 (2016) SCI cit. 34 (2016) ------------- | 17.) | V. Mazankova, L. Torokova, F. Krcma, N. Mason, S. Matejcik: The Influence of CO2 Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic, ORIG. LIFE EVOL. BIOSPHERES 46 (4) 499-506 (2016), WoS (2016) ------------- | 18.) | L. Prevosto, H. Kelly, B. Mancinelli: Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes, PLASMA CHEM. PLASMA PROCESS. 36 (4) 973-992 (2016), WoS (2016) ------------- | 19.) | S. Zhu, WM Jiang, J. Tang, YG Xu, YS Wang, W. Zhao, YX Duan: Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure, JAPAN. J. APPL. PHYS. 55 (5) 056202 (2016), WoS (2016) ------------- | 20.) | Kh. K. Tazmeev, B. Kh. Tazmeev: Some features of horizontally oriented low-current electric arc in air, PLASMA PHYS. REPORTS 42 (1) 86-90 (2016), WoS (2016) ------------- | 21.) | L. Prevosto, H. Kelly, B. Mancinelli, J. C. Chamorro, E. Cejas: On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime, Phys. Plasmas 22, 023504 (2015), cit. 12, SCI (2015) ------------- | 22.) | L. Torokova, V. Mazankova, F. Krcma, N. Mason, S. Matejcik: Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas, EUR. PHYS. J.-APPL. PHYS. 71 (2) 20806 (2015), WoS (2015) ------------- | 23.) | Z. Weiss, E.B.M. Steers, J.C. Pickering: Transition rates and transition rate diagrams in atomic emission spectroscopy: A review, SPECTROCHIMICA ACTA B-ATOMIC SPECTROSC. 110, 79-90 (2015), WoS (2015) ------------- | 24.) | Mesko M.; Vretenar V.; Kotrusz P.; Hulman. M; Skakalova V.: Synthesis of carbon nanowalls on macroporous nickel foam by atmospheric glow discharge chemical vapour deposition, PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS 251(5) 933-936 (2014), SCI cit (2014) ------------- | 25.) | E. Hontanon; J.M. Palomares; X. Guo, et al.: Influence of the inter-electrode distance on the production of nanoparticles by means of atmospheric pressure inert gas dc glow discharge, J. PHYS. D-APPLIED PHYSICS 47, 415201 (2014), SCI cit.
(2014) ------------- | 26.) | Y F Wu, YH Xu, Research on Diffuse Discharge of Electrode Structure with Magnetron tapered Needle Ray in Atmospheric Pressure Air, Energy Reviewers 1(1) (2014), DOI: 10.7508/ER-V1-N1-16-24, cit. 6 (2014) ------------- | 27.) | Hontañón E., Palomares J. M., Stein M., Guo X., Engeln R., Nirschl H., Kruis F. E. (2013). The transition from spark to arc discharge and its implications with respect to nanoparticle production. J. Nanoparticle Research, 15 (9), UNSP 1957, SCI (2013) ------------- | 28.) | Bruggeman P; Brandenburg R: Atmospheric pressure discharge filaments and microplasmas: physics, chemistry and diagnostics, J. PHYS. D-APPLIED PHYSICS 46, 464001 (2013), SCI cit. (2013) ------------- | 29.) | Petrov A.E.; Titov V.A.; Smirnov S.A.:
CONCENTRATION OF OXYGEN ATOMS IN ATMOSPHERIC PRESSURE AIR GLOW DISCHARGE; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA 56(2) 80, WoS (2013) ------------- | 30.) | G. V. Naidis: Simulation of convection-stabilized modulated discharges in atmospheric-pressure air, Plasma Sources Sci. Technol. 21 (2012) 025009 (6pp), SCI cit. 4 (2012) ------------- | 31.) | Papadakis, A.P.: Numerical Analysis of the Heating Effects of an Atmospheric Air-Dielectric Barrier Discharge, IEEE Trans. Plasma Science 40, art. no. 6156458, 811-820 (2012), SCI (2012) ------------- | 32.) | N.V. Landl, Yu.D. Korolev, O.B. Frants: Nitric Oxide Generation in Plasma Jet of Low-Current Plasmatron, 8th International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy ISNTP-8, Camaret, France, 25-29 June 2012, cit. [9] (2012) ------------- | 33.) | Yu.D. Korolev, O.B. Frants, N.V. Landl, V.S. Kasyanov, S.I. Galanov, O.I. Sidorova, Y. Kim, L.A. Rosocha, I.B. Matveev: Methane Oxidation in a Plasma-Assisted Combustion System Based on Nonsteady-State Plasmatron, 8th International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy ISNTP-8, Camaret, France, 25-29 June 2012, cit. [44] (2012) ------------- | 34.) | Lopez A; Diez R; Perilla G; Patino, D.: Analysis and Comparison of Three Topologies of the Ladder Multilevel DC/DC Converter, IEEE TRANS. POWER ELECTRONICS 27 (2012), 3119-3127, SCI (2012) ------------- | 35.) | Y. C. Sutton, P. C. Johnson, G. V. Naidis, D. Sharp, N. St J Braithwaite: A numerical and experimental investigation of an axially symmetric RF plasma, 2012 J. Phys. D: Appl. Phys. 45 455201, cit. 16 INDEX (2012) ------------- | 36.) | Korolev, Yury D.; Frants, Oleg B.; Landl, Nikolay V.; et al., Low-Current Plasmatron as a Source of Nitrogen Oxide Molecules, IEEE TRANSACTIONS ON PLASMA SCIENCE Volume: 40 Issue: 11 Special Issue: SI Pages: 2837-2842 DOI: 10.1109/TPS.2012.2201755 Part: Part 1 Published: NOV 2012 (2012) ------------- | 37.) | Korolev, Yury D.; Frants, Oleg B.; Geyman, Vladimir G.; et al., Transient Processes During Formation of a Steady-State Glow Discharge in Air, IEEE TRANSACTIONS ON PLASMA SCIENCE Volume: 40 Issue: 11 Special Issue: SI Pages: 2951-2960 DOI: 10.1109/TPS.2012.2211622 Part: Part 1 Published: NOV 2012 (2012) ------------- | 38.) | V. I. Arkhipenko, A.A. Kirillov, Y. A. Safronau, et al.: Plasma non-equilibrium of the DC normal glow discharges in atmospheric pressure atomic and molecular gases, Eur. Phys. J. D 66 (2012) 252, SCI cit. (2012) ------------- | 39.) | J. Meichsner, M. Schmidt, R. Schneider, H-E. Wagner (eds): Nonthermal Plasma Chemistry and Physics, CRC Press, Taylor & Francis group, Boca Raton, 2012 (2012) ------------- | 40.) | L. Leštinská: Microwave plasma optical emission spectroscopy combined with atmospheric pressure DC discharges, PhD. thesis, Comenius University Bratislava, 2012 (2012) ------------- | 41.) | Gutsol, A.; Rabinovich, A.; Fridman, A. ; Combustion-assisted plasma in fuel conversion, J. Phys D - Appl. Phys. 44 (27): Art. No. 274001 ( 2011) (2011) ------------- | 42.) | Wu SQ; Wang Z; Huang QJ; Lu XP; Pan Y: Study on a Room-Temperature Air Plasma for Biomedical Application, IEEE Trans. Plasma Sci. 39 (2011) 1489-1495, SCI cit. (2011) ------------- | 43.) | O.S. Stoican: An atmospheric pressure plasma source driven by a train of monopolar high voltage pulses superimposed to a dc voltage, Eur. Phys. J. Appl. Phys. 55 (3), 30801 (2011), SCI citation 9 (2011) ------------- | 44.) | F. Kaddouri: Développment de diagnostic optiques avancés pour l' étude de la cinétique ultrarapide de production d' oxygene par décharge nanoseconde dans l' air a pression atmosphérique. PhD. thesis, Paris : Ecole Centrale des Arts, 2011, 137 pp (2011) ------------- | 45.) | Cheng M. D. (2011) Testing Nonthermal Plasma for Decontamination of Sensitive Weapons Systems and Platforms (No. WP-1760) OAK RIDGE NATIONAL LAB TN ENVIRONMENTAL SCIENCES DIV, SERDP report, cit. 16 (2011) ------------- | 46.) | Xiong, Z., Lu, X.P., Feng, A., Pan, Y., Ostrikov, K., Highly effective fungal inactivation in He+ O2 atmospheric-pressure nonequilibrium plasmas, Physics of Plasmas 17 (12), art. no. 123502 (2010), SCOPUS (2010) ------------- | 47.) | N. Shirai, H. Shito, S. Ibuka, et al.: DC Corona and Glow Discharges Generated along the Intersecting Axial Miniature Gas Flows under Atmospheric Pressure Air, Appl. Phys. Express 2 (2009) 076001, SCI cit. (2009) ------------- | 48.) | V. I. Arkhipenko, T. Callegari, Y. A. Safronau, L. V. Simonchik: Atmospheric-Pressure Air Glow Discharge in a Three-Electrode Configuration, IEEE Trans. Plasma Sci. 37 (2009) 1297-1304, SCI cit. (2009) ------------- | 49.) | K. Hensel: Microdischarges in ceramic foams and honeycombs, Eur. Phys. J. Appl. Phys. 54 (2009) 141-148, SCI cit. (2009) ------------- | 50.) | A. Risacher: Etude de l’interaction d’un arc électrique de faible puissance avec une onde électromagnétique dans un écoulement d‘air a pression atmosphérique, PhD. thesis, UNIVERSITE PARIS XI Orsay, France, 2008, cit. [27] (2008) ------------- | 51.) | M. Morvová: Znižovanie skleníkového efektu synergiou zužitkovania spalín v nízkoteplotnej nerovnovážnej atmosférickej plazme a využitím obnoviteľných zdrojov energie. Vzťah medzi zužitkovaním spalín a prebiotickou chémiou v oxidačnej prvotnej atmosfére. DrSc. Dizertačná práca, FMFI UK Bratislava 2008. cit. 50 (2008) ------------- | 52.) | C. Dong, W.G. Wang, H.Y. Li: Atmospheric pressure air direct current glow discharge ionization source for ion mobility spectrometry, Analyt. Chem. 80 (2008) 3925-3930, SCI cit. (2008) ------------- | 53.) | Arkhipenko V. I., Callegari Т., Pitchford L., Safronau Y. А., & Simonchik L. V.: Atmospheric pressure glow discharge in ambient air sustained in a three-electrode configuration, XXXV international conference on plasma physics and CF, February 11–15, 2008, Zvenigorod, cit. 3 (2008) ------------- | 54.) | A. Risacher, S. Larigaldie, G. Bobillot, J.-P. Marcellin, L. Picard: Active Stabilization of Low-Current Arc Discharges in Atmospheric Pressure Air, Plasma Sources Sci. Technol. 16 (2007), 200-209, SCI cit. 10 (2007) ------------- | 55.) | G. Naidis: Simulation of convection-stabilized low-current glow and arc discharges in atmospheric-pressure air, Plasma Sources Sci. Technol. 16 (2007) 297–303, SCI cit. 4 (2007) ------------- | 56.) | S. Muller, R.J. Zahn: Air pollution control by non-thermal plasma, Contrib. Plasma Phys. 47, 520–529 (2007), SCI cit. 23 (2007) ------------- | 57.) | M. Janda: The Study Of Plasma Induced Chemistry In Gaseous Mixture N2 -CO2 -H2O, PhD. thesis, Leopold Franzens University of Innsbruck, Austria, 2006; FMFI UK Bratislava 2006, cit. [60] (2006) ------------- | |