Search:  

Division of Environmental Physics - User: anka
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava


Capillary microplasmas for ozone generation

Hensel K., Machala Z., Tardiveau P.
Eur. Phys. J. Appl. Phys. 47 (2), 22813, 5 pp (2009)

download  


Abstract:

Microdischarges in spatially confined geometries, such as microcavities and micropores of various materials, present a promising method for the generation and maintenance of stable discharges at atmospheric pressure. They have been successfully used in many biomedical, environmental and industrial applications. The paper presents two relatively new types of discharges in confined volumes – a capillary microdischarge in ceramic foams and a sliding discharge inside the capillaries of ceramic honeycombs – and describes their basic physical properties and mechanisms. Microdischarges inside the microporous ceramic foams develop from the surface barrier discharge if the amplitude of the applied voltage reaches given threshold, but only for a specific pore size. Sliding discharge inside the honeycomb capillaries is produced by a combination of AC barrier discharge inside catalytic pellet bed coupled in series with DC powered honeycomb monolith. Both discharges produce relatively cold microplasmas with high level of non-equilibrium. The basic characteristics of the microdischarges, addressing the effects of the applied voltage, discharge power, pore size, length and diameter of the capillaries are discussed.


Citations:

1.)A. A. Abdelaziz A. Ayman, T. Ishijima, N. Osawa, T. Seto: Quantitative Analysis of Ozone and Nitrogen Oxides Produced by a Low Power Miniaturized Surface Dielectric Barrier Discharge: Effect of Oxygen Content and Humidity Level, Plasma Chem. Plasma Process. 39 (1), 165-185 (2019), citation no. 52, WoS/SCOPUS
(2019)
-------------
2.)T. Ma, H.-X. Wang, Q. Shi, S.-N. Li, S.-R. Sun,. A. B. Murphy: Experimental Study of CO2 Decomposition in a DC Micro-slit Sustained Glow Discharge Reactor, Plasma Chem. Plasma Process. 39 (4), 825-844 (2019), citation no. 15, WoS
(2019)
-------------
3.)L. Wu, Q. Xie , Y. Lv, Z. Wu, X. Liang, M. Lu, Y. Nie: Degradation of Methylene Blue via Dielectric Barrier Discharge Plasma Treatment, Water 11, 1818 (2019), citation no. 18, INDEX
(2019)
-------------
4.)A. Elkholy, E. van Veldhuizen, S. Nijdam, U. Ebert, J. van Oijen, N. Dam, L. Philip H. de Goey: Characteristics of a novel nanosecond DBD microplasma reactor for flow applications, Plasma Sources Sci. Technol. 27 (5), 055014 (2018), citation no. 6, WoS/SCOPUS
(2018)
-------------
5.)J. H. Lozano-Parada: Producción eficiente de ozono en un microplasma en aire a presión atmosférica, Ciencia en Desarrollo 8 (1), 169-178 (2017) citation no. 3
(2017)
-------------
6.)A. A. Abdelaziz, T. Ishijima, T. Seto, N. Osawa, H. Wedaa, Y. Otani: Characterization of surface dielectric barrier discharge influenced by intermediate frequency for ozone production, Plasma Sources Sci. Technol. 25, 035012 (2016), citation no. 56, WoS/SCOPUS
(2016)
-------------
7.)O. Taylan, H. Berberoglu: Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration, Plasma Sources Sci. Technol. 24, 015006 (2015), citation no. 16, INDEX
(2015)
-------------
8.)F. Feng, Y. Zheng, X. Shen, Q. Zheng, S. Dai, X. Zhang, Y. Huang, Z. Liu, K. Yan: Characteristics of back corona discharge in a honeycomb catalyst and its application for treatment of volatile organic compounds, Environ. Sci. Technol. 49, 6831-6837 (2015), citation no. 27, SCOPUS
(2015)
-------------
9.)O. Taylan, H. Berberoglu: Electrical characterization and an equivalent circuit model of a microhollow cathode discharge reactor, J. Appl. Phys. 116, 043302 (2014), citation no. 1, INDEX
(2014)
-------------
10.)P. K. Singh, J. Hopwood, S. Sonkusale: Metamaterials for Remote Generation of Spatially Controllable Two Dimensional Array of Microplasma, Scientific Reports 4, 5964 (2014), citation no. 31, WoS/SCOPUS
(2014)
-------------
11.)H. Wedaa, M. Abdel-Salam, M. Ahmed, A. Mizuno: Two-dimensional modelling of dielectric barrier discharges using charge simulation technique-theory against experiment, IET Science, Measurement and Technology 8 (5) 285-293 (2014), citation no. 7, WoS/SCOPUS
(2014)
-------------
12.)O. Taylan: Synthesis Gas Production using Non-Thermal Plasma Reactors, PhD Thesis, University of Texas, Austin, citation no. 12 (2014)
(2014)
-------------
13.)F. Feng, L. Ye, J. Liu, K. Yan: Non-thermal plasma generation by using back corona discharge on catalyst, J. Electrostat. 71 (3), 179-184 (2013), citation no. 19, SCOPUS
(2013)
-------------
14.)O. Taylan, H. Berberoglu: Dissociation of carbon dioxide using a microdischarge plasma reactor, ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 6A (2013), citation no. 2, SCOPUS
(2013)
-------------
15.)F. Pechereau, J. Jánský, A. Bourdon: Simulation of the reignition of a discharge behind a dielectric layer in air at atmospheric pressure, Plasma Sources Sci. Technol. 21 (5), 055011 (2012), citation Hensel, WoS/SCOPUS
(2012)
-------------
16.)K. D. Stephan, S. Ghimire, R. K. Smith, L. Komala-Noor, N. Massey: Transverse stabilization of atmospheric-pressure DC glow plasma in air with resistive barrier, IEEE Trans. Plasma Sci. 39 (10), 1919-1926 (2011), citation no. 16, WoS/SCOPUS
(2011)
-------------


HOME
NEWS
STAFF
RESEARCH
PUBLICATIONS
STUDENTS
LINKS
CONTACT

Post-doctoral positions



 

User: anka

Logout