Citations: 1.) | Lavrikova, A., Dadi, N.C.T., Bujdáková, H., Hensel, K., 2024. Inactivation pathways of Escherichia coli and Staphylococcus aureus induced by transient spark discharge in liquids. Plasma Processes & Polymers 21, 2300147. https://doi.org/10.1002/ppap.202300147 (2024) ------------- | 2.) | Xiong, ZL; Wang, YQ and Li, MQ 2023 Study on characteristics of acoustic signals generated by different DC discharge modes; PLASMA SCIENCE & TECHNOLOGY 25:055404; 10.1088/2058-6272/acac04 (2023) ------------- | 3.) | Chiu, P.-H., Cheng, Y.-C., Lua, K.B., Wu, J.-S., 2023. DBD-streamer mode transition of atmospheric-pressure plasma jet applied on water with varying distance and AC power. Phys. Scr. 98, 115604. https://doi.org/10.1088/1402-4896/acfdd5 (2023) ------------- | 4.) | d’Abzac, Q., Ribière, M., Eichwald, O., Ducasse, O., 2023. Arcing in ambient air triggered by pulsed x-ray radiation. AIP Advances 13, 085006. https://doi.org/10.1063/5.0149048 (2023) ------------- | 5.) | Zhu, Y., Wu, Y., Chen, X., 2023. Transition Criteria and Scaling Law of Streamer-Spark Pulsed Discharges, in: Shao, T., Zhang, C. (Eds.), Pulsed Discharge Plasmas, Springer Series in Plasma Science and Technology. Springer Nature Singapore, Singapore, pp. 193–215. https://doi.org/10.1007/978-981-99-1141-7_7 (2023) ------------- | 6.) | Zhou, X.-F., Xiang, H.-F., Yang, M.-H., Geng, W.-Q., Liu, K., 2023. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency. J. Phys. D: Appl. Phys. 56, 455202. https://doi.org/10.1088/1361-6463/acec81 (2023) ------------- | 7.) | Ribiere, M 2022 Influence of plasma density on the cross sections of radiative recombination to configuration-averaged excited nitrogen and oxygen atoms and ions, JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 55:225201, 10.1088/1361-6455/ac9567 (2022) ------------- | 8.) | Martell, BC, Strobel, LR and Guerra-Garcia, C 2022 DC-driven positive streamer coronas in airflow, PLASMA SOURCES SCIENCE & TECHNOLOGY 31:085014, 10.1088/1361-6595/ac844a (2022) ------------- | 9.) | Yang, JY et al. 2022 Spatiotemporally resolved measurements of electric field around a piezoelectric transformer using electric-field induced second harmonic (E-FISH) generation, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:225203, 10.1088/1361-6463/ac406a (2022) ------------- | 10.) | Zhao, Z et al. 2022 Periodical discharge regime transitions under long-term repetitive nanosecond pulses, PLASMA SOURCES SCIENCE & TECHNOLOGY 31:045005, 10.1088/1361-6595/ac6050 (2022) ------------- | 11.) | Kucerova, K; Henselova, M; Slovakova, L; Bacovcinova, M; Hensel, K 2021 Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters, APPLIED SCIENCES-BASEL 11, 1985, 10.3390/app11051985 (2021) ------------- | 12.) | Gerling, T; Wilke, C; Becker, MM 2021 Fast electrical diagnostics and dispersion relation for ion density determination in an atmospheric pressure argon plasma, JOURNAL OF PHYSICS D-APPLIED PHYSICS 54, 85201, 10.1088/1361-6463/abc5e8 (2021) ------------- | 13.) | Yao, Y; Timoshkin, IV; MacGregor, SJ; Wilson, MP; Given, MJ; Wang, T 2021 Postbreakdown Transient Characteristics of a Gas-Filled Plasma Closing Switch, IEEE TRANSACTIONS ON PLASMA SCIENCE 49, 942-951, 10.1109/TPS.2021.3053097 (2021) ------------- | 14.) | Bilbao, L and Prieto, GR 2021 Measurement and interpretation of electrical signals in transient electrical discharges, PHYSICA SCRIPTA 96:125534, 10.1088/1402-4896/ac418e (2021) ------------- | 15.) | Li Z.; Liu J.; Lu X.: A large atmospheric pressure nonequilibrium open space air plasma based on a ROTATing electrode; PLASMA SOURCES SCI. TECHNOL. 29 (4) 045015 (2020), WoS (2020) ------------- | 16.) | Chen, XC; Zhu, YF; Wu, Y 2020 Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage, PLASMA SOURCES SCIENCE & TECHNOLOGY 29, 95006, 10.1088/1361-6595/ab8e4e (2020) ------------- | 17.) | Jaenicke, OK; Martinez, FGH; Yang, JY; Im, SK; Go, DB 2020 Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma, APPLIED PHYSICS LETTERS 117, 93901, 10.1063/5.0018967 (2020) ------------- | 18.) | S. Wang, F. Liu, D. Yang, W. Wang, and Z. Fang, Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode, J. Appl. Phys. 125, 043304 (2019) (2019) ------------- | 19.) | S. Kelly, J. A. Sullivan (2019) CO2 Decomposition in CO2 and CO2 /H2 Spark-like Plasma Discharges at Atmospheric Pressure, ChemSusChem, DOI: 10.1002/cssc.201901744, SCOPUS (2019) ------------- | 20.) | R. Bálek, M. Klenivskyi: DC-driven atmospheric pressure pulseddischarge with volume-distributed filamentsin a coaxial electrode system J. Appl. Phys. 126, 083301 (2019); https://doi.org/10.1063/1.5113950 (2019) ------------- | 21.) | T. Zarei, D. Dorranian: Investigating the Optimized Physical and Electrical Operating Condition of DC Pulsed Spark Discharge Over Water Surface Generated by Different Input Parameters, IEEE Trans. Plasma Sci. 47, 3949-3959 (2019), citation no. 2, INDEX (2019) ------------- | 22.) | P. Thana, A. Wijaikhum, P. Poramapijitwat, et al: A compact pulse-modulation cold air plasma jet for the inactivation ofchronic wound bacteria: development and characterization, Heliyon 5 (2019) e02455, WoS (2019) ------------- | 23.) | Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; et al. (2018) Subnanosecond breakdown in high-pressure gases. PLASMA SOURCES SCIENCE TECHNOLOGY 27(1):013001. (2018) ------------- | 24.) | X. Pei, J. Kredl, X. P. Lu, J. F. Kolb: Discharge modes of atmospheric pressure DC plasma jets operated with air or nitrogen, J. Phys. D. Appl. Phys. 51 (38), 384001 (2018), citation no. 39, WoS/SCOPUS (2018) ------------- | 25.) | S. Wu, W. Cheng, G. Huang, F. Wu, Ch. Liu, X. Liu, Ch. Zhang, and X. L, Positive streamer corona, single filament, transient glow, dc glow, spark, and their transitions in atmospheric air, Phys. Plasmas 25, 123507 (2018), WoS/SCOPUS (2018) ------------- | 26.) | S. Wu, X. Liu, W. Mao, W. Chen, Ch. Liu, and Ch. Zhang, Non-thermal air plasma jets at atmospheric pressure: Theflow-dependentpropagation in the afterglow, J. Appl. Phys.124, 243302 (2018) (2018) ------------- | 27.) | Pei X., Gidon D., Graves D. B.: Propeller arc: design and basic characteristics. Plasma Sources Sci. Technol., 27 (12), (2018) 125007 - WOS; SCOPUS (2018) ------------- | 28.) | A. M. TRIMUkhe, K. N. Pandiyaraj, A. Tripathi, J. S. Melo, R. R. Deshmukh: Plasma Surface Modification of Biomaterials for Biomedical Applications, In book: Advances in Biomaterials for Biomedical Applications, Publisher: Springer, 99-166 (2017) (2017) ------------- | 29.) | Trimukhe A., Navaneetha Pandiyaraj K., Tripathi A., Melo J. Deshmukh R. R., Plasma Surface Modification of Biomaterials for Biomedical Applications, Advances in Biomaterials for Biomedical Applications, Edition: Advanced Structured Materials, Publisher: Springer Singapore, Editors: Anuj Tripathi, Jose Savio Melo, pp.95-166
DOI: 10.1007/978-981-10-3328-5_3, (2017) SCOPUS (2017) ------------- | 30.) | A. J. M. Pemen, P. P. van Ooij, F. J.C. M. Beckers, W. F. L. M. Hoeben, A. M. C. B. Koonen-Reemst, T. Huiskamp, P. H. M. Leenders: Power modulator for high-yield production of plasma-activated water, IEEE Trans. Plasma Sci. 45 (10) 2725-2732 (2017) (2017) ------------- | 31.) | Bruggeman, P.J.; Iza, F.; Brandenburg, R. (2017) Foundations of atmospheric pressure non-equilibrium plasmas. PLASMA SOURCES SCIENCE TECHNOLOGY 26(12):123002. (2017) ------------- | 32.) | Khun, J.; Jiresova, J.; Kujalova, L.; et al. (2017) Comparing the biocidal properties of non-thermal plasma sources by reference protocol. EUROPEAN PHYSICAL JOURNAL D 71(10):263. (2017) ------------- | 33.) | C. I. FELEA, D. Astanei: Electrical characterization of the double crossing Glidarc reactor with cylindrical symmetry, 2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 1039-1044 (2017), WoS (2017) ------------- | 34.) | Li X., Li X., Zhang P., Chu J., Li J., Jia P.: Experimental investigation on the discharge modes of a direct-current voltage excited plasma jet in a needle-to-ring geometry. Scientia Sinica: Physica, Mechanica Et Astronomica 47 (2), (2017) 025201, SCOPUS (2017) ------------- | 35.) | C.E. Anderson, N.R. Cha, A.D. Lindsay, D.S. Clark, D.B. Graves: The Role of Interfacial Reactions in Determining Plasma-Liquid Chemistry, Plasma Chem. Plasma Process. 36, 1393-1415 (2016), cit. 52, WoS (2016) ------------- | 36.) | O. Emelyanov, P. Kliuiko, M. Shemet: Single Partial Discharge in Nonuniform Electric Field for Different Polymer Dielectrics, IEEE International Conference on Dielectrics (ICD), Montpellier, FRANCE, JUL 03-07, 2016, IEEE Dielectr & Elect Insulat Soc; Univ Montpellier, Inst Elect Systemes, Grp Energie Materiaux; CNRS, VOLS 1-2, 1171-1174 (2016), WoS (2016) ------------- | 37.) | V.F. Tarasenko, M.I. Lomaev, D.V. Beloplotov, et al.: Runaway electrons during subnanosecond breakdowns in high-pressure gases, HIGH VOLTAGE 1, 181-191 (2016), WoS (2016) ------------- | 38.) | S. Li, I. Timoshkin, M. Maclean, et al., Oxidation and Biodecontamination Effects of Impulsive Discharges in Atmospheric Air, IEEE Trans. Plasma Sci. 44, 2145-2155 (2016), WoS (2016) ------------- | 39.) | Messanelli F., Belan M.: Ionic wind measurements on multi-tip plasma actuators. EPJ Web of Conferences, 114 (2016) 02073, WOS; SCOPUS (2016) ------------- | 40.) | Korolev, Yu. D., Low-current discharge plasma jets in a gas flow. Application of plasma jets, RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 85:1311-1325 (2015) WoS (2015) ------------- | 41.) | Scholtz V., Souskova H., Hubka V., Julak J., Inactivation of human pathogenic dermatophytes by non-thermal plasma, Journal of microbiological methods 119:53-58 (2015) WoS (2015) ------------- | 42.) | Gerling T.; Bussiahn R.; Wilke C., Weltmann KD; Time-resolved ion density determination by electrical current measurements in an atmospheric-pressure argon plasma, EPL 105 (2) 25001, SCI cit (2014) ------------- | 43.) | Balek R.; Cervenka M.; Pekarek S.: Acoustic field effects on a negative corona discharge, Plasma Sources Sci. Technol. 23 (3), 035005 (2014), SCI (2014) ------------- | 44.) | Li X; Bao W; Jia P; et al.: A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure, J. Appl. Phys 116 (2) 023302 (2014), SCI (2014) ------------- | 45.) | Belan M: Plasma-Gas Flow Interaction of a Discharge Normal to a Bluff Body Wake, IEEE TRANS. PLASMA SCI. 42 (9) 2170-2178 (2014), SCI (2014) ------------- | 46.) | Lotfalipour R.; Ghorbanzadeh A. M.; Mahdian A.: Methane conversion by repetitive nanosecond pulsed plasma, J. Phys. D: Appl. Phys. 47 (36) 365201 (2014), SCI (2014) ------------- | 47.) | Gerling T.; Hoder T.; Brandenburg R., Bussiahn R., Weltmann K-D.: Influence of the capillary on the ignition of the transient spark discharge, J PHYS D-APPL PHYS 46 (2013) 145205, SCI cit. 15 (2013) ------------- | 48.) | Li XC, Di C, Jia PY, Bao WT: Characteristics of an atmospheric-pressure argon plasma jet excited by a dc voltage, Plasma Sources Sci. Technol. 22 (2013) 045007, SCI (2013) ------------- | 49.) | Hontañón E., Palomares J. M., Stein M., Guo X., Engeln R., Nirschl H., Kruis F. E. (2013). The transition from spark to arc discharge and its implications with respect to nanoparticle production. J. Nanoparticle Research, 15 (9), 1-19, SCI (2013) ------------- | 50.) | Li XC, Di C, Jia PY, Bao WT: Characteristics of a Direct Current-driven plasma jet operated in open air, Appl. Phys. Lett. 103 (2013) 144107, SCI (2013) ------------- | 51.) | Gerling T et al., On the spatio-temporal dynamics of a self-pulsed nanosecond transient spark discharge: a spectroscopic and electrical analysis, Plasma Sources Sci. Technol. 22 (2013) 065012 (2013) ------------- | 52.) | Pekárek S. Effect of magnetic field, airflow or combination of airflow with magnetic field on hollow needle-to-cylinder discharge regimes. J. Phys. D: Appl. Phys. 46 (2013) 505207, SCI cit. 23 (2013) ------------- | 53.) | Korolev Y. D.: Low-current atmospheric-pressure discharges in gas flow and their applications. Gaodianya Jishu/High Voltage Engineering, 39 (9) (2013) 2061-2076, SCOPUS (2013) ------------- | 54.) | T. Verreycken: Spectroscopic investigation of OH dynamics in transient atmospheric pressure plasmas; PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2013 (2013) ------------- | 55.) | N.V. Landl, Yu.D. Korolev, O.B. Frants: Nitric Oxide Generation in Plasma Jet of Low-Current Plasmatron, 8th International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy ISNTP-8, Camaret, France, 25-29 June 2012, cit. [8] (2012) ------------- | 56.) | Korolev Y. D. Transient Processes During Formation of a Steady-State Glow Discharge in Air, IEEE TRANS. PLASMA SCI 40 (2012) 2951-2960, SCI cit. 31 (2012) ------------- | 57.) | Korolev, Y. D. - Frants, O. B. - Landl, N. V. - Suslov, A. I.: Low-current plasmatron as a source of nitrogen oxide molecules. In: IEEE Transactions on Plasma Science, Vol. 40, No. 11, Spec. Issue, Part 1, 2012, s. 2837-2842 - SCI ;SCOPUS (2012) ------------- | 58.) | Hoder T., Brandenburg R., Gerling T., Paillol J., Kozlov K. V., Wagner H. E.: Cross-correlation spectroscopy applied to streamer discharges at atmospheric pressure. 19th Symposium on Physics of Switching Arc 2011. Brno: University of Technology 221-224 (2011), SCOPUS (2011) ------------- | |