Hľadaj:   

Oddelenie environmentálnej fyziky - Prihlásený: veronika
Katedra astronómie, fyziky Zeme a meteorológie, FMFI UK, Bratislava,


The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air

Janda M., Machala Z., Niklová A., Martišovitš V.
Plasma Sources Sci. Technol. 21, 045006 (9pp) (2012)

download  


Abstrakt:

We present a study of the streamer-to-spark transition in a self-pulsing dc-driven discharge
called a transient spark (TS). The TS is a streamer-to-spark transition discharge with short
spark duration (∼10–100 ns), based on charging and discharging of the internal capacity of the
electric circuit with repetition frequency 1–10 kHz. The TS can be maintained under relatively
low energy conditions (0.1–1 mJ/pulse). It generates a very reactive non-equilibrium air
plasma applicable for flue gas cleaning or bio-decontamination.
Thanks to the short spark current pulse duration, the steady-state gas temperature,
measured at the beginning of the streamers initiating the TS, increases from an initial value of
∼300 K only up to ∼550 K at 10 kHz. The streamer-to-spark transition is governed by the
subsequent increase in the gas temperature in the plasma channel up to ∼1000 K. This
breakdown temperature does not change with increasing repetition frequency f . The heating
after the streamer accelerates with increasing f , leading to a decrease in the average
streamer-to-spark transition time from a few μs to less than 100 ns.


Citácie:

1.)Stamenković, S.N., Marković, V.Lj., Samardžić, B.M., 2025. The formative time delay and electron avalanche number distributions for multielectron initiation of streamer breakdown. Physica A: Statistical Mechanics and its Applications 658, 130269. https://doi.org/10.1016/j.physa.2024.130269
(2025)
-------------
2.)Shang, H., Ning, W., Shen, S., Wang, R., Dai, D., Jia, S., 2024. Atmospheric pressure plasma jet for surface treatment: a review. Rev. Mod. Plasma Phys. 9, 3. https://doi.org/10.1007/s41614-024-00177-0
(2025)
-------------
3.)Lomaev, M., Tarasenko, V., Sorokin, D., Beloplotov, D., 2024. Ignition of Carbon Black during Nanosecond Diffuse and Spark Discharges in Air at Atmospheric Pressure. Surfaces 7, 44–53. https://doi.org/10.3390/surfaces7010004
(2024)
-------------
4.)Sakamoto, Y., Tsutsumi, T., Tanaka, H., Ishikawa, K., Hashizume, H., Hori, M., 2024. High-Speed Removal Process for Organic Polymers by Non-Thermal Atmospheric-Pressure Spark Discharge at Room Temperature and Its Mechanism. Coatings 14, 1339. https://doi.org/10.3390/coatings14101339
(2024)
-------------
5.)Peng, B., Jiang, N., Zhu, Y., Li, J., Wu, Y., 2024. Three-electrode surface dielectric barrier discharge driven by repetitive pulses: streamer dynamic evolution and discharge mode transition. Plasma Sources Sci. Technol. 33, 045018. https://doi.org/10.1088/1361-6595/ad3a9e
(2024)
-------------
6.)Zamo, A., Rond, C., Hamdan, A., 2024. Polystyrene (PS) Degradation Induced by Nanosecond Electric Discharge in Air in Contact with PS/Water. Plasma 7, 49–63. https://doi.org/10.3390/plasma7010004
(2024)
-------------
7.)Wang, LJ et al. 2023 Computational study on the discharge dynamics of atmospheric pressure He plasma driven by high frequency AC voltage; PHYSICA SCRIPTA 98:025602; 10.1088/1402-4896/acae3f
(2023)
-------------
8.)Zhao, ZG et al. 2023 Water activated by the atmospheric air streamer-to-spark transition discharge over its surface; PLASMA PROCESSES AND POLYMERS 20; 10.1002/ppap.202200227
(2023)
-------------
9.)Wei, M et al. 2023 Study on the Path and Thermal Characteristics of the Spark Discharge Between Ice and Electrode Gap; IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION 30:491-500; 10.1109/TDEI.2023.3243617
(2023)
-------------
10.)Xiong, ZL; Wang, YQ and Li, MQ 2023 Study on characteristics of acoustic signals generated by different DC discharge modes; PLASMA SCIENCE & TECHNOLOGY 25:055404; 10.1088/2058-6272/acac04
(2023)
-------------
11.)Hamdan, A et al. 2023 Interaction of a Pulsed Nanosecond Discharge in Air in Contact with a Suspension of Crystalline Nanocellulose (CNC); PLASMA CHEMISTRY AND PLASMA PROCESSING 43:849-865; 10.1007/s11090-023-10335-w
(2023)
-------------
12.)Zhang, B., Zhu, Y., Zhang, X., Popov, N., Orriere, T., Pai, D.Z., Starikovskaia, S.M., 2023. Streamer-to-filament transition in pulsed nanosecond atmospheric pressure discharge: 2D numerical modeling. Plasma Sources Sci. Technol. 32, 115014. https://doi.org/10.1088/1361-6595/ad085c
(2023)
-------------
13.)Deng, X., Ding, H., Hou, Z., 2023. Thermal characteristics of stabilization effects induced by nanostructures in plasma heat source interacting with ice blocks. International Journal of Heat and Mass Transfer 202, 123695. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123695
(2023)
-------------
14.)Zhu, Y., Wu, Y., Chen, X., 2023. Transition Criteria and Scaling Law of Streamer-Spark Pulsed Discharges, in: Shao, T., Zhang, C. (Eds.), Pulsed Discharge Plasmas, Springer Series in Plasma Science and Technology. Springer Nature Singapore, Singapore, pp. 193–215. https://doi.org/10.1007/978-981-99-1141-7_7
(2023)
-------------
15.)Zhou, X.-F., Xiang, H.-F., Yang, M.-H., Geng, W.-Q., Liu, K., 2023. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency. J. Phys. D: Appl. Phys. 56, 455202. https://doi.org/10.1088/1361-6463/acec81
(2023)
-------------
16.)Chiu, P.-H., Cheng, Y.-C., Lua, K.B., Wu, J.-S., 2023. DBD-streamer mode transition of atmospheric-pressure plasma jet applied on water with varying distance and AC power. Phys. Scr. 98, 115604. https://doi.org/10.1088/1402-4896/acfdd5
(2023)
-------------
17.)Qian, S et al 2022 BaTiO3-Refined NiCuZn Ferrites Towards Enhanced Pulse Detection Sensitivity for a High-Frequency Current Transformer, JOURNAL OF ELECTRONIC MATERIALS, 10.1007/s11664-022-10029-7
(2022)
-------------
18.)Deng, XX and Hou, ZY 2022 Thermal characteristic and spatial morphology between electrode and phase changing ice during de-icing process of dielectric barrier discharge and critical behavior of the surface charge density, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 190:122556, 10.1016/j.ijheatmasstransfer.2022.122556
(2022)
-------------
19.)Zhou, T et al 2022 Temperature and composition of AC arc plasma of medium voltage distribution networks in the air, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:245201, 10.1088/1361-6463/ac5c1f UT WOS:000771737000001
(2022)
-------------
20.)Yang, JY et al 2022 Spatiotemporally resolved measurements of electric field around a piezoelectric transformer using electric-field induced second harmonic (E-FISH) generation, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:225203, 10.1088/1361-6463/ac406a
(2022)
-------------
21.)Korytchenko, K et al 2022 Numerical analysis of the spark channel expansion in a high-pressure hydrogen-oxygen mixture and in nitrogen, SHOCK WAVES 32:321-335, 10.1007/s00193-022-01077-3
(2022)
-------------
22.)Jiang, N et al 2022 Promoting streamer propagation, active species generation and trichloroethylene degradation using a three-electrode nanosecond pulsed sliding DBD nanosecond plasma, JOURNAL OF CLEANER PRODUCTION 332:129998, 10.1016/j.jclepro.2021.129998
(2022)
-------------
23.)Hamdan, A; Diamond, J; Herrmann, A 2021 Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge, JOURNAL OF PHYSICS COMMUNICATIONS 5, 35005, 10.1088/2399-6528/abe953
(2021)
-------------
24.)Timmermann, E; Bansemer, R; Gerling, T; Hahn, V; Weltmann, KD; Nettesheim, S; Puff, M 2021 Piezoelectric-driven plasma pen with multiple nozzles used as a medical device: risk estimation and antimicrobial efficacy, JOURNAL OF PHYSICS D-APPLIED PHYSICS 54, 25201, 10.1088/1361-6463/abb900
(2021)
-------------
25.)Korytchenko, KV; Shypul, OV; Samoilenko, D; Varshamova, IS; Lisniak, AA; Harbuz, SV; Ostapov, KM 2021 NUMERICAL SIMULATION OF GAP LENGTH INFLUENCE ON ENERGY DEPOSITION IN SPARK DISCHARGE, ELECTRICAL ENGINEERING & ELECTROMECHANICS XXX, 35-43, 10.20998/2074-272X.2021.1.06
(2021)
-------------
26.)Hu, JL et al 2021 Expansion characteristics of a discharge column in an electrode-ice gap, PHYSICS OF PLASMAS 28:123522, 10.1063/5.0065641
(2021)
-------------
27.)Arcanjo, M et al 2021 Optical Signatures Associated With Streamers and Leaders of Laboratory Discharges, GEOPHYSICAL RESEARCH LETTERS 48:e2021GL095601, 10.1029/2021GL095601
(2021)
-------------
28.)Wei, M et al 2021 Experimental Study on Thermal Characteristics of DC Arc Formation between Ice-Electrode Gap, IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION 28:1497-1505, 10.1109/TDEI.2021.009546
(2021)
-------------
29.)Zhang, X et al 2021 On the pulsed-pulseless mode transition of negative DC corona in atmospheric nitrogen, PHYSICS OF PLASMAS 28:063505, 10.1063/5.0042885
(2021)
-------------
30.)Tochikubo, F and Komuro, A 2021 Review of numerical simulation of atmospheric-pressure non-equilibrium plasmas: streamer discharges and glow discharges, JAPANESE JOURNAL OF APPLIED PHYSICS 60:040501, 10.35848/1347-4065/abe6e2
(2021)
-------------
31.)Korytchenko, K et al 2021 Thermal radiation in spark discharge, PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 10.46813/2021-134-171
(2021)
-------------
32.)Jahanbakhsh S.; Brueser V.; Brandenburg R: Experimental investigation of single microdischarges in a barrier corona arrangement with a cathodic metal pin; PLASMA SOURCES SCIENCE & TECHNOL. 29 (1) 015001 (2020), WoS
(2020)
-------------
33.)S. Wang, D. Z. Yang, R. Zhou , Z. Fang, W. Wang, K. Ostrikov: Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: Effect of GROUNDING CONFIGURATION, Plasma Process. Polym. 17, e1900146 (2020), WoS
(2020)
-------------
34.)Korytchenko KV; Tomashevskiy RS; Varshamova IS; Meshkov DV; Samoilenko D: Numerical investigation of energy deposition in spark discharge in adiabatically and isothermally compressed nitrogen; JAPANESE J. APPLIED PHYS. 59 SHHC04 (2020), WoS
(2020)
-------------
35.)Komuro A; Suzuki K; Yoshida K; Ando A: Characteristics of spatiotemporal variations of primary and secondary streamers under pulsed-voltage in air at atmospheric pressure; JAPANESE J. APPL. PHYS. 59, SAAB03 (2020), WoS
(2020)
-------------
36.)Chen, XC; Zhu, YF; Wu, Y 2020 Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage, PLASMA SOURCES SCIENCE & TECHNOLOGY 29, 95006, 10.1088/1361-6595/ab8e4e
(2020)
-------------
37.)Jaenicke, OK; Martinez, FGH; Yang, JY; Im, SK; Go, DB 2020 Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma, APPLIED PHYSICS LETTERS 117, 93901, 10.1063/5.0018967
(2020)
-------------
38.)V. Held, M. Morvová, Combustion exhaust cleaning using transition electric\r\ndischarge, 22nd Symposium on Applications of Plasma Processes and 11th EU-Japan Joint Symposium on Plasma Processing, Štrbské pleso, Slovakia, january 18-24, 2019, pp. 298-301
(2019)
-------------
39.)S. Wang, F. Liu, D. Yang, W. Wang, and Z. Fang, Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode, J. Appl. Phys. 125, 043304 (2019)
(2019)
-------------
40.)Doyle D. Knight: Energy Deposition for High-Speed Flow Control, Cambridge University Press 2019, Online ISBN 97813163893, DOI: 10.1017/9781316389331
(2019)
-------------
41.)Wang C., Wang L., Mei H., Li X., Guan Z. 2019, Streamer Discharge Test Platform with Three-electrode Structure, Gaodianya Jishu/High Voltage Engineering 45 (1) 103-108, SCOPUS
(2019)
-------------
42.)Kučerová, K., Henselová, M., Slováková, Ľ., Hensel, K., Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity (2019) Plasma Processes and Polymers, 16 (3), art. no. 1800131
(2019)
-------------
43.)S. Jin, D. Zou, X. Lu, and M. Laroussi (2019) The effect of tube geometry on the chiral plasma, Phys. Plasmas 26, 093507
(2019)
-------------
44.)P. Thana et al 2019 A compact pulse-modulation cold air plasma jet for the inactivation ofchronic wound bacteria: development and characterization, Heliyon 5 (2019) e02455
(2019)
-------------
45.)D. Gidon, X.K. Pei, A.D. Bonzanini, D.B. Graves, A. Mesbah: Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources; IEEE TRANS. RADIATION PLASMA MEDICAL SCI. 3 (5) 597-605 (2019), WoS
(2019)
-------------
46.)S. Chen, R.G.W. van den Berg, S. Nijdam: The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes, Plasma Sources Sci. Technol. 27 (5) 055021 (2018) WoS
(2018)
-------------
47.)B-D. Huang, E. Carbone, K. Takashima, X.-M. Zhu, U. Czarnetzki and Y.-K. Pu, The effect of the pulse repetition rate on the fast ionization wave discharge, J. Phys. D: Appl. Phys. 51 (2018) 225202, WoS, cit. 12
(2018)
-------------
48.)Choudhary U, Dey E, Bhattacharyya R and Ghosh SK, A Brief Review on Plasma Treatment of Textile Materials, Adv Res Text Eng. 2018; 3(1): 1019.
(2018)
-------------
49.)Khun J.; Scholtz V.; Hozak P.; Fitl P.; Julak J. (2018) Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. PLASMA SOURCES SCIENCE TECHNOLOGY 27(6):065002, WoS
(2018)
-------------
50.)X. Lu and K. Ostrikov (2018) Guided ionization waves: The physics of repeatability. APPLIED PHYSICS REVIEWS 5:031102.
(2018)
-------------
51.)S. Wu,W. Cheng, G. Huang, F. Wu, Ch. Liu, X. Liu, Ch. Zhang, and X. L, Positive streamer corona, single filament, transient glow, dc glow, spark, and their transitions in atmospheric air, Phys. Plasmas 25, 123507 (2018), SCOPUS
(2018)
-------------
52.)M.A. Malik, K.H. Schoenbach, T.M.Abdel-Fattah, et al., Low Cost Compact Nanosecond Pulsed Plasma System for Environmental and Biomedical Applications, Plasma Chem. Plasma Process. (2017) 37: 59–76, cit. 53, INDEX
(2017)
-------------
53.)Furusato T., Sadamatsu T., Matsuda Y., Yamashita T., Streamer Branching and Spectroscopic Characteristics of Surface Discharge on Water Under Different Pulsed Voltages, IEEE Transactions on Plasma Science PP(99):1-7, DOI: 10.1109/TPS.2017.2669312
(2017)
-------------
54.)Kohut, Attila; Galbacs, Gabor; Marton, Zsuzsanna; et al., Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation, PLASMA SOURCES SCIENCE TECHNOLOGY 26, 045001 (2017), WoS
(2017)
-------------
55.)Houpt, Alec W.; Leonov, Sergey B., Charge Transfer in Constricted Form of Surface Barrier Discharge at Atmospheric Pressure, JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER 31, 145-153 (2017), WoS
(2017)
-------------
56.)P. Galář, J. Khun, D. Kopecký, V. Scholtz, M. Trchová, A. Fučíková, J. Jirešová, and L. Fišer, Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension, SCientiFiC Reports 7: 15068 (2017), DOI:10.1038/s41598-017-15184-0
(2017)
-------------
57.)X. Meng, H. Mei, L. Wang et al.: Characteristics of Streamer Propagation along Insulation Surface: Influence of Shed Configuration, IEEE TRANS. DIELECTRICS AND ELECTRICAL INSULATION 23, 2145-2155 (2016), WoS
(2016)
-------------
58.)W. Yang, R. Zhu, B.C. Ma: Repetitively Pulsed Discharges Ignited in Microchannels Between Two Nonequally Broad Planar Electrodes and Their Charging for Nanoscale Aerosol Particles, IEEE Trans. Plasma Science 44(6): 944-949 (2016), WoS
(2016)
-------------
59.)C.E. Anderson, N.R. Cha, A.D. Lindsay, D.S. Clark, D.B. Graves: The Role of Interfacial Reactions in Determining Plasma-Liquid Chemistry, Plasma Chem. Plasma Process. 36, 1393-1415 (2016), cit. 55, WoS
(2016)
-------------
60.)Wu, S.; Cao, Y.; Lu, X., The State of the Art of Applications of Atmospheric-Pressure Nonequilibrium Plasma Jets in Dentistry, IEEE TRANS. PLASMA SCIENCE 44, 134-151 (2016), WoS
(2016)
-------------
61.)T. Matsumoto, T. Omori, R. Sasamoto et al., Localized Residual Heat and Formation of Nonbranched Positive Streamer With Highly Repetitive Streamer Discharge, IEEE TRANS. PLASMA SCIENCE 44, 113-120 (2016), cit. 17, SCOPUS
(2016)
-------------
62.)Matsumoto T; Kijima K; Shimoju T; et al.: Gas Heating and Formation of Single Linear Discharge Channel on Repetitive Branched Streamer Corona, ELECTRICAL ENGINEERING IN JAPAN 190 (2) 10-16 (2015), SCI
(2015)
-------------
63.)Meng X., Mei H., Chen C., Wang L., Guan Z., and Zhou, J., Characteristics of streamer propagation along the insulation surface: influence of dielectric material, IEEE T DIELECT EL IN 22, 1193 (2015), SCI
(2015)
-------------
64.)J.M. Palomares, A. Kohut, G. Galbacs, et al., A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge, J. APPL. PHYSICS 118, 233305 (2015), WoS
(2015)
-------------
65.)J. Winter, R. Brandenburg, R.; K-D Weltmann: Atmospheric pressure plasma jets: an overview of devices and new directions, PLASMA SOURCES SCI. & TECHNOL. 24, 064001 (2015), WoS
(2015)
-------------
66.)Zhao TL; Liu JL; Li XS; Li XS; Liu JB; Song YH; Xu Y; Zhu AM: Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow, PHYS. PLASMAS 21 (5) 053507 (2014), SCI cit.
(2014)
-------------
67.)Korolev Y. D.; Frants O. B.; Landl N. V.,; Bolotov AV; Nekhoroshev VO: Features of a near-cathode region in a gliding arc discharge in air flow, Plasma Sources Sci. Technol. 23(5) 054016 (2014), SCI
(2014)
-------------
68.)H. C. Basso, X. Qiu, W. Wirges, R. Gerhard: Temporal evolution of the re-breakdown voltage in small gaps from nanoseconds to milliseconds, Appl. Phys. Lett. 102, 012904 (2013) - SCI cit. 29
(2013)
-------------


DOMOV
ČLENOVIA
VÝSKUM
PUBLIKÁCIE
ŠTUDENTI
LINKY
KONTAKT




Prihlásený(á): veronika

Odhlásenie