Citácie: 1.) | Lomaev, M., Tarasenko, V., Sorokin, D., Beloplotov, D., 2024. Ignition of Carbon Black during Nanosecond Diffuse and Spark Discharges in Air at Atmospheric Pressure. Surfaces 7, 44–53. https://doi.org/10.3390/surfaces7010004 (2024) ------------- | 2.) | Sakamoto, Y., Tsutsumi, T., Tanaka, H., Ishikawa, K., Hashizume, H., Hori, M., 2024. High-Speed Removal Process for Organic Polymers by Non-Thermal Atmospheric-Pressure Spark Discharge at Room Temperature and Its Mechanism. Coatings 14, 1339. https://doi.org/10.3390/coatings14101339 (2024) ------------- | 3.) | Peng, B., Jiang, N., Zhu, Y., Li, J., Wu, Y., 2024. Three-electrode surface dielectric barrier discharge driven by repetitive pulses: streamer dynamic evolution and discharge mode transition. Plasma Sources Sci. Technol. 33, 045018. https://doi.org/10.1088/1361-6595/ad3a9e (2024) ------------- | 4.) | Zamo, A., Rond, C., Hamdan, A., 2024. Polystyrene (PS) Degradation Induced by Nanosecond Electric Discharge in Air in Contact with PS/Water. Plasma 7, 49–63. https://doi.org/10.3390/plasma7010004 (2024) ------------- | 5.) | Wang, LJ et al. 2023 Computational study on the discharge dynamics of atmospheric pressure He plasma driven by high frequency AC voltage; PHYSICA SCRIPTA 98:025602; 10.1088/1402-4896/acae3f (2023) ------------- | 6.) | Zhao, ZG et al. 2023 Water activated by the atmospheric air streamer-to-spark transition discharge over its surface; PLASMA PROCESSES AND POLYMERS 20; 10.1002/ppap.202200227 (2023) ------------- | 7.) | Wei, M et al. 2023 Study on the Path and Thermal Characteristics of the Spark Discharge Between Ice and Electrode Gap; IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION 30:491-500; 10.1109/TDEI.2023.3243617 (2023) ------------- | 8.) | Xiong, ZL; Wang, YQ and Li, MQ 2023 Study on characteristics of acoustic signals generated by different DC discharge modes; PLASMA SCIENCE & TECHNOLOGY 25:055404; 10.1088/2058-6272/acac04 (2023) ------------- | 9.) | Hamdan, A et al. 2023 Interaction of a Pulsed Nanosecond Discharge in Air in Contact with a Suspension of Crystalline Nanocellulose (CNC); PLASMA CHEMISTRY AND PLASMA PROCESSING 43:849-865; 10.1007/s11090-023-10335-w (2023) ------------- | 10.) | Zhang, B., Zhu, Y., Zhang, X., Popov, N., Orriere, T., Pai, D.Z., Starikovskaia, S.M., 2023. Streamer-to-filament transition in pulsed nanosecond atmospheric pressure discharge: 2D numerical modeling. Plasma Sources Sci. Technol. 32, 115014. https://doi.org/10.1088/1361-6595/ad085c (2023) ------------- | 11.) | Deng, X., Ding, H., Hou, Z., 2023. Thermal characteristics of stabilization effects induced by nanostructures in plasma heat source interacting with ice blocks. International Journal of Heat and Mass Transfer 202, 123695. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123695 (2023) ------------- | 12.) | Zhu, Y., Wu, Y., Chen, X., 2023. Transition Criteria and Scaling Law of Streamer-Spark Pulsed Discharges, in: Shao, T., Zhang, C. (Eds.), Pulsed Discharge Plasmas, Springer Series in Plasma Science and Technology. Springer Nature Singapore, Singapore, pp. 193–215. https://doi.org/10.1007/978-981-99-1141-7_7 (2023) ------------- | 13.) | Zhou, X.-F., Xiang, H.-F., Yang, M.-H., Geng, W.-Q., Liu, K., 2023. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency. J. Phys. D: Appl. Phys. 56, 455202. https://doi.org/10.1088/1361-6463/acec81 (2023) ------------- | 14.) | Chiu, P.-H., Cheng, Y.-C., Lua, K.B., Wu, J.-S., 2023. DBD-streamer mode transition of atmospheric-pressure plasma jet applied on water with varying distance and AC power. Phys. Scr. 98, 115604. https://doi.org/10.1088/1402-4896/acfdd5 (2023) ------------- | 15.) | Qian, S et al 2022 BaTiO3-Refined NiCuZn Ferrites Towards Enhanced Pulse Detection Sensitivity for a High-Frequency Current Transformer, JOURNAL OF ELECTRONIC MATERIALS, 10.1007/s11664-022-10029-7 (2022) ------------- | 16.) | Deng, XX and Hou, ZY 2022 Thermal characteristic and spatial morphology between electrode and phase changing ice during de-icing process of dielectric barrier discharge and critical behavior of the surface charge density, INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 190:122556, 10.1016/j.ijheatmasstransfer.2022.122556 (2022) ------------- | 17.) | Zhou, T et al 2022 Temperature and composition of AC arc plasma of medium voltage distribution networks in the air, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:245201, 10.1088/1361-6463/ac5c1f
UT WOS:000771737000001 (2022) ------------- | 18.) | Yang, JY et al 2022 Spatiotemporally resolved measurements of electric field around a piezoelectric transformer using electric-field induced second harmonic (E-FISH) generation, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:225203, 10.1088/1361-6463/ac406a (2022) ------------- | 19.) | Korytchenko, K et al 2022 Numerical analysis of the spark channel expansion in a high-pressure hydrogen-oxygen mixture and in nitrogen, SHOCK WAVES 32:321-335, 10.1007/s00193-022-01077-3 (2022) ------------- | 20.) | Jiang, N et al 2022 Promoting streamer propagation, active species generation and trichloroethylene degradation using a three-electrode nanosecond pulsed sliding DBD nanosecond plasma, JOURNAL OF CLEANER PRODUCTION 332:129998, 10.1016/j.jclepro.2021.129998 (2022) ------------- | 21.) | Hamdan, A; Diamond, J; Herrmann, A 2021 Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge, JOURNAL OF PHYSICS COMMUNICATIONS 5, 35005, 10.1088/2399-6528/abe953 (2021) ------------- | 22.) | Timmermann, E; Bansemer, R; Gerling, T; Hahn, V; Weltmann, KD; Nettesheim, S; Puff, M 2021 Piezoelectric-driven plasma pen with multiple nozzles used as a medical device: risk estimation and antimicrobial efficacy, JOURNAL OF PHYSICS D-APPLIED PHYSICS 54, 25201, 10.1088/1361-6463/abb900 (2021) ------------- | 23.) | Korytchenko, KV; Shypul, OV; Samoilenko, D; Varshamova, IS; Lisniak, AA; Harbuz, SV; Ostapov, KM 2021 NUMERICAL SIMULATION OF GAP LENGTH INFLUENCE ON ENERGY DEPOSITION IN SPARK DISCHARGE, ELECTRICAL ENGINEERING & ELECTROMECHANICS XXX, 35-43, 10.20998/2074-272X.2021.1.06 (2021) ------------- | 24.) | Hu, JL et al 2021 Expansion characteristics of a discharge column in an electrode-ice gap, PHYSICS OF PLASMAS 28:123522, 10.1063/5.0065641 (2021) ------------- | 25.) | Arcanjo, M et al 2021 Optical Signatures Associated With Streamers and Leaders of Laboratory Discharges, GEOPHYSICAL RESEARCH LETTERS 48:e2021GL095601, 10.1029/2021GL095601 (2021) ------------- | 26.) | Wei, M et al 2021 Experimental Study on Thermal Characteristics of DC Arc Formation between Ice-Electrode Gap, IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION 28:1497-1505, 10.1109/TDEI.2021.009546 (2021) ------------- | 27.) | Zhang, X et al 2021 On the pulsed-pulseless mode transition of negative DC corona in atmospheric nitrogen, PHYSICS OF PLASMAS 28:063505, 10.1063/5.0042885 (2021) ------------- | 28.) | Tochikubo, F and Komuro, A 2021 Review of numerical simulation of atmospheric-pressure non-equilibrium plasmas: streamer discharges and glow discharges, JAPANESE JOURNAL OF APPLIED PHYSICS 60:040501, 10.35848/1347-4065/abe6e2 (2021) ------------- | 29.) | Korytchenko, K et al 2021 Thermal radiation in spark discharge, PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 10.46813/2021-134-171 (2021) ------------- | 30.) | Jahanbakhsh S.; Brueser V.; Brandenburg R: Experimental investigation of single microdischarges in a barrier corona arrangement with a cathodic metal pin;
PLASMA SOURCES SCIENCE & TECHNOL. 29 (1) 015001 (2020), WoS (2020) ------------- | 31.) | S. Wang, D. Z. Yang, R. Zhou , Z. Fang, W. Wang, K. Ostrikov: Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: Effect of GROUNDING CONFIGURATION, Plasma Process. Polym. 17, e1900146 (2020), WoS (2020) ------------- | 32.) | Korytchenko KV; Tomashevskiy RS; Varshamova IS; Meshkov DV; Samoilenko D: Numerical investigation of energy deposition in spark discharge in adiabatically and isothermally compressed nitrogen; JAPANESE J. APPLIED PHYS. 59 SHHC04 (2020), WoS (2020) ------------- | 33.) | Komuro A; Suzuki K; Yoshida K; Ando A: Characteristics of spatiotemporal variations of primary and secondary streamers under pulsed-voltage in air at atmospheric pressure; JAPANESE J. APPL. PHYS. 59, SAAB03 (2020), WoS (2020) ------------- | 34.) | Chen, XC; Zhu, YF; Wu, Y 2020 Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage, PLASMA SOURCES SCIENCE & TECHNOLOGY 29, 95006, 10.1088/1361-6595/ab8e4e (2020) ------------- | 35.) | Jaenicke, OK; Martinez, FGH; Yang, JY; Im, SK; Go, DB 2020 Hand-generated piezoelectric mechanical-to-electrical energy conversion plasma, APPLIED PHYSICS LETTERS 117, 93901, 10.1063/5.0018967 (2020) ------------- | 36.) | V. Held, M. Morvová, Combustion exhaust cleaning using transition electric\r\ndischarge, 22nd Symposium on Applications of Plasma Processes and 11th EU-Japan Joint Symposium on Plasma Processing, Štrbské pleso, Slovakia, january 18-24, 2019, pp. 298-301 (2019) ------------- | 37.) | S. Wang, F. Liu, D. Yang, W. Wang, and Z. Fang, Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode, J. Appl. Phys. 125, 043304 (2019) (2019) ------------- | 38.) | Doyle D. Knight: Energy Deposition for High-Speed Flow Control, Cambridge University Press 2019, Online ISBN 97813163893, DOI: 10.1017/9781316389331 (2019) ------------- | 39.) | Wang C., Wang L., Mei H., Li X., Guan Z. 2019, Streamer Discharge Test Platform with Three-electrode Structure, Gaodianya Jishu/High Voltage Engineering 45 (1) 103-108, SCOPUS (2019) ------------- | 40.) | Kučerová, K., Henselová, M., Slováková, Ľ., Hensel, K., Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity (2019) Plasma Processes and Polymers, 16 (3), art. no. 1800131 (2019) ------------- | 41.) | S. Jin, D. Zou, X. Lu, and M. Laroussi (2019) The effect of tube geometry on the chiral plasma, Phys. Plasmas 26, 093507 (2019) ------------- | 42.) | P. Thana et al 2019 A compact pulse-modulation cold air plasma jet for the inactivation ofchronic wound bacteria: development and characterization, Heliyon 5 (2019) e02455 (2019) ------------- | 43.) | D. Gidon, X.K. Pei, A.D. Bonzanini, D.B. Graves, A. Mesbah: Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources; IEEE TRANS. RADIATION PLASMA MEDICAL SCI. 3 (5) 597-605 (2019), WoS (2019) ------------- | 44.) | S. Chen, R.G.W. van den Berg, S. Nijdam: The effect of DC voltage polarity on ionic wind in ambient air for cooling purposes, Plasma Sources Sci. Technol. 27 (5) 055021 (2018) WoS (2018) ------------- | 45.) | B-D. Huang, E. Carbone, K. Takashima, X.-M. Zhu, U. Czarnetzki and Y.-K. Pu, The effect of the pulse repetition rate
on the fast ionization wave discharge, J. Phys. D: Appl. Phys. 51 (2018) 225202, WoS, cit. 12 (2018) ------------- | 46.) | Choudhary U, Dey E, Bhattacharyya R and Ghosh SK, A Brief Review on Plasma Treatment of Textile Materials, Adv Res Text Eng. 2018; 3(1): 1019. (2018) ------------- | 47.) | Khun J.; Scholtz V.; Hozak P.; Fitl P.; Julak J. (2018) Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects. PLASMA SOURCES SCIENCE TECHNOLOGY 27(6):065002, WoS (2018) ------------- | 48.) | X. Lu and K. Ostrikov (2018) Guided ionization waves: The physics of repeatability. APPLIED PHYSICS REVIEWS 5:031102. (2018) ------------- | 49.) | S. Wu,W. Cheng, G. Huang, F. Wu, Ch. Liu, X. Liu, Ch. Zhang, and X. L, Positive streamer corona, single filament, transient glow, dc glow, spark, and their transitions in atmospheric air, Phys. Plasmas 25, 123507 (2018), SCOPUS (2018) ------------- | 50.) | M.A. Malik, K.H. Schoenbach, T.M.Abdel-Fattah, et al., Low Cost Compact Nanosecond Pulsed Plasma System for Environmental and Biomedical Applications, Plasma Chem. Plasma Process. (2017) 37: 59–76, cit. 53, INDEX (2017) ------------- | 51.) | Furusato T., Sadamatsu T., Matsuda Y., Yamashita T., Streamer Branching and Spectroscopic Characteristics of Surface Discharge on Water Under Different Pulsed Voltages, IEEE Transactions on Plasma Science PP(99):1-7, DOI: 10.1109/TPS.2017.2669312 (2017) ------------- | 52.) | Kohut, Attila; Galbacs, Gabor; Marton, Zsuzsanna; et al., Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation, PLASMA SOURCES SCIENCE TECHNOLOGY 26, 045001 (2017), WoS (2017) ------------- | 53.) | Houpt, Alec W.; Leonov, Sergey B., Charge Transfer in Constricted Form of Surface Barrier Discharge at Atmospheric Pressure, JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER 31, 145-153 (2017), WoS (2017) ------------- | 54.) | P. Galář, J. Khun, D. Kopecký, V. Scholtz, M. Trchová, A. Fučíková, J. Jirešová, and L. Fišer, Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension, SCientiFiC Reports 7: 15068 (2017), DOI:10.1038/s41598-017-15184-0 (2017) ------------- | 55.) | X. Meng, H. Mei, L. Wang et al.: Characteristics of Streamer Propagation along Insulation Surface: Influence of Shed Configuration, IEEE TRANS. DIELECTRICS AND ELECTRICAL INSULATION 23, 2145-2155 (2016), WoS (2016) ------------- | 56.) | W. Yang, R. Zhu, B.C. Ma: Repetitively Pulsed Discharges Ignited in Microchannels Between Two Nonequally Broad Planar Electrodes and Their Charging for Nanoscale Aerosol Particles, IEEE Trans. Plasma Science 44(6): 944-949 (2016), WoS (2016) ------------- | 57.) | C.E. Anderson, N.R. Cha, A.D. Lindsay, D.S. Clark, D.B. Graves: The Role of Interfacial Reactions in Determining Plasma-Liquid Chemistry, Plasma Chem. Plasma Process. 36, 1393-1415 (2016), cit. 55, WoS (2016) ------------- | 58.) | Wu, S.; Cao, Y.; Lu, X., The State of the Art of Applications of Atmospheric-Pressure Nonequilibrium Plasma Jets in Dentistry, IEEE TRANS. PLASMA SCIENCE 44, 134-151 (2016), WoS (2016) ------------- | 59.) | T. Matsumoto, T. Omori, R. Sasamoto et al., Localized Residual Heat and Formation of Nonbranched Positive Streamer With Highly Repetitive Streamer Discharge, IEEE TRANS. PLASMA SCIENCE 44, 113-120 (2016), cit. 17, SCOPUS (2016) ------------- | 60.) | Matsumoto T; Kijima K; Shimoju T; et al.: Gas Heating and Formation of Single Linear Discharge Channel on Repetitive Branched Streamer Corona, ELECTRICAL ENGINEERING IN JAPAN 190 (2) 10-16 (2015), SCI (2015) ------------- | 61.) | Meng X., Mei H., Chen C., Wang L., Guan Z., and Zhou, J., Characteristics of streamer propagation along the insulation surface: influence of dielectric material, IEEE T DIELECT EL IN 22, 1193 (2015), SCI
(2015) ------------- | 62.) | J.M. Palomares, A. Kohut, G. Galbacs, et al., A time-resolved imaging and electrical study on a high current atmospheric pressure spark discharge, J. APPL. PHYSICS 118, 233305 (2015), WoS (2015) ------------- | 63.) | J. Winter, R. Brandenburg, R.; K-D Weltmann: Atmospheric pressure plasma jets: an overview of devices and new directions, PLASMA SOURCES SCI. & TECHNOL. 24, 064001 (2015), WoS (2015) ------------- | 64.) | Zhao TL; Liu JL; Li XS; Li XS; Liu JB; Song YH; Xu Y; Zhu AM: Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow, PHYS. PLASMAS 21 (5) 053507 (2014), SCI cit. (2014) ------------- | 65.) | Korolev Y. D.; Frants O. B.; Landl N. V.,; Bolotov AV; Nekhoroshev VO: Features of a near-cathode region in a gliding arc discharge in air flow, Plasma Sources Sci. Technol. 23(5) 054016 (2014), SCI (2014) ------------- | 66.) | H. C. Basso, X. Qiu, W. Wirges, R. Gerhard: Temporal evolution of the re-breakdown voltage in small gaps from nanoseconds to milliseconds, Appl. Phys. Lett. 102, 012904 (2013) - SCI cit. 29 (2013) ------------- | |