Citations: | 1.) | Jovanović, A.P., Höft, H., Loffhagen, D., Becker, M.M., Gerling, T., 2025. Discharge modes of self-pulsing discharges in argon at atmospheric pressure. J. Phys. D: Appl. Phys. 58, 275204. https://doi.org/10.1088/1361-6463/addd2e (2025) ------------- | | 2.) | Artem’ev, K.V., Davydov, A.M., Gusein-zade, N.G., 2025. Production of nitrogen oxides by spark discharges in air generated by a piezoelectric transformer. Physics of Plasmas 32, 063502. https://doi.org/10.1063/5.0268048 (2025) ------------- | | 3.) | Strobel, L.R., Guerra-Garcia, C., 2025. Numerical investigation of the bridging and current flow of a positive DC streamer using a 1.5D model. J. Phys. D: Appl. Phys. 58, 105203. https://doi.org/10.1088/1361-6463/ad9bc2 (2025) ------------- | | 4.) | Peng, B., Jiang, N., Zhu, Y., Li, J., Wu, Y., 2024. Three-electrode surface dielectric barrier discharge driven by repetitive pulses: streamer dynamic evolution and discharge mode transition. Plasma Sources Sci. Technol. 33, 045018. https://doi.org/10.1088/1361-6595/ad3a9e (2024) ------------- | | 5.) | Xiong, ZL; Wang, YQ and Li, MQ 2023 Classification of DC discharge modes based on acoustic signal; PHYSICA SCRIPTA 98:015613; 10.1088/1402-4896/acab98 (2023) ------------- | | 6.) | Xiong, ZL; Wang, YQ and Li, MQ 2023 Study on characteristics of acoustic signals generated by different DC discharge modes; PLASMA SCIENCE & TECHNOLOGY 25:055404; 10.1088/2058-6272/acac04 (2023) ------------- | | 7.) | Peng, B., Jiang, N., Zhu, Y., Li, J., Wu, Y., 2024. Three-electrode surface dielectric barrier discharge driven by repetitive pulses: streamer dynamic evolution and discharge mode transition. Plasma Sources Sci. Technol. 33, 045018. https://doi.org/10.1088/1361-6595/ad3a9e (2023) ------------- | | 8.) | Szulc, M et al 2022 Influence of Pulse Amplitude and Frequency on Plasma Properties of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure APPLIED SCIENCES-BASEL 12:6580, 10.3390/app12136580 (2022) ------------- | | 9.) | Szulc, M et al. 2022 Spectroscopic Characterization of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure, APPLIED SCIENCES-BASEL 12:6366, 10.3390/app12136366 (2022) ------------- | | 10.) | Li Z.; Liu J.; Lu X.:
A large atmospheric pressure nonequilibrium open space air plasma based on a rotating electrode; PLASMA SOURCES SCI. TECHNOL. 29 (4) 045015 (2020), WoS (2020) ------------- | | 11.) | Chen, XC; Zhu, YF; Wu, Y: Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage, PLASMA SOURCES SCI. TECHNOL. 29, 95006 (2020) WoS (2020) ------------- | | 12.) | V. Held, M. Morvová, Combustion exhaust cleaning using transition electric
discharge, 22nd Symposium on Applications of Plasma Processes and 11th EU-Japan Joint Symposium on Plasma Processing, Štrbské pleso, Slovakia, january 18-24, 2019, pp. 298-301 (2019) ------------- | | 13.) | S. A. Shcherbanev, Ch. Ding, S. M. Starikovskaia, N. A. Popov (2019) Filamentary nanosecond surface dielectric barrier discharge. Plasma properties in the filaments, Plasma Sources Sci. Technol. 28 (6) 065013 (2019) (2019) ------------- | | 14.) | Ding, ZW, Li, YW, Pang, L, Zhuang, Z, Ma, W, Zhang, BL (2019) Regime Transition of Pin-to-Plate Nanosecond Pulsed Discharge under Low Pressure, PLASMA PHYSICS REPORTS 45:492-500; DOI 10.1134/S1063780X19050040, WoS (2019) ------------- | | 15.) | Bálek R., Klenivskyi M., DC-driven atmospheric pressure pulseddischarge with volume-distributed filamentsin a coaxial electrode system J. Appl. Phys. 126, 083301 (2019); https://doi.org/10.1063/1.5113950 (2019) ------------- | | 16.) | C Kong, J Gao, J Zhu, A Ehn, M Alden, Z Li (2018). Effect of turbulent flow on an atmospheric-pressure AC powered gliding arc discharge. Journal of Applied Physics. 123. 223302. 10.1063/1.5026703. (2018) ------------- | | 17.) | C Kong, J Gao, J Zhu, A Ehn, M Aldén, and Z Li, Re-igniting the afterglow plasma column of an AC powered gliding arc discharge in atmospheric-pressure air
Appl. Phys. Lett. 112, 264101 (2018) (2018) ------------- | | 18.) | Shao, Tao; Wang, Ruixue; Zhang, Cheng; et al. (2018) Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications. HIGH VOLTAGE 3(1):14-20. (2018) ------------- | | 19.) | X. Lu and K. Ostrikov (2018) Guided ionization waves: The physics of repeatability. APPLIED PHYSICS REVIEWS 5:031102. (2018) ------------- | | 20.) | X. Pei, J. Kredl, X. P. Lu, J. F. Kolb: Discharge modes of atmospheric pressure DC plasma jets operated with air or nitrogen, J. Phys. D. Appl. Phys. 51 (38), 384001 (2018), citation no. 41, WoS/SCOPUS (2018) ------------- | | 21.) | S. Wu,W. Cheng, G. Huang, F. Wu, Ch. Liu, X. Liu, Ch. Zhang, and X. L, Positive streamer corona, single filament, transient glow, dc glow, spark, and their transitions in atmospheric air, Phys. Plasmas 25, 123507 (2018), SCOPUS (2018) ------------- | | 22.) | Šimek, M., Bonaventura, Z., Non-equilibrium kinetics of the ground and excited states in N2 -O2 under nanosecond discharge conditions: Extended scheme and comparison with available experimental observations, Journal of Physics D: Applied Physics
51(50),504004 SCOPUS (2018) ------------- | | 23.) | Zhang C., Shao T., Ren C., Yan P., Niu Z.: Mode transition in microsecond-pulse gliding discharges at atmospheric pressure. 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC 2016), (2017) 572-575; SCOPUS (2017) ------------- | | 24.) | Matra K.: DC non-thermal atmospheric-pressure plasma jet generated using a syringe needle electrode, JAPANESE JOURNAL OF APPLIED PHYSICS 55, 07LB02 (2016), WoS
(2016) ------------- | | 25.) | Shao T., Zhang C., Wang R., Yan P., Ren C. : Atmospheric-pressure pulsed gas discharge and pulsed plasma application. Gaodianya Jishu/High Voltage Engineering 42 (3), 2016, 685-705; SCOPUS (2016) ------------- | |