Citácie: 1.) | Das, S., Mohapatra, S., Kar, S., 2024. Physicochemical properties and antimicrobial efficacy of argon cold atmospheric pressure plasma jet activated liquids – a comparative study. Fundamental Plasma Physics 12, 100078. https://doi.org/10.1016/j.fpp.2024.100078 (2024) ------------- | 2.) | Ye, Y., Wei, X., Zhang, L., Wang, S., Fang, Z., 2024. Sustainable nitrogen fixation by bubble discharge plasma: Performance optimization and mechanism. Journal of Energy Chemistry 98, 692–701. https://doi.org/10.1016/j.jechem.2024.07.012 (2024) ------------- | 3.) | Sainz-García, A., González-Marcos, A., Muro-Fraguas, I., Múgica-Vidal, R., Gallarta-González, F., González-Arenzana, L., López-Alfaro, I., Santamaría, P., Escribano-Viana, R., Alba-Elías, F., Sainz-García, E., 2024. Plasma Activated Water for wine barrels disinfection. LWT 198, 116024. https://doi.org/10.1016/j.lwt.2024.116024 (2024) ------------- | 4.) | Agus, R., Avino, F., Ibba, L., Myers, B., Zampieri, L., Martines, E., Howling, A., Furno, I., 2024. Implementing water recirculation in a novel portable plasma-activated water reactor enhances antimicrobial effect against Escherichia coli. Chemical Engineering Journal 486, 149915. https://doi.org/10.1016/j.cej.2024.149915 (2024) ------------- | 5.) | Li, H., Shi, Q., Yang, Y., Qi, J., Zhang, Y., Wang, F., Du, X., Xiao, W., 2024. Experiment on inducing apoptosis of melanoma cells by micro-plasma jet. Nanotechnology and Precision Engineering 7, 013002. https://doi.org/10.1063/10.0022239 (2024) ------------- | 6.) | Konchekov, E.M., Gudkova, V.V., Burmistrov, D.E., Konkova, A.S., Zimina, M.A., Khatueva, M.D., Polyakova, V.A., Stepanenko, A.A., Pavlik, T.I., Borzosekov, V.D., Malakhov, D.V., Kolik, L.V., Gusein-zade, N., Gudkov, S.V., 2024. Bacterial Decontamination of Water-Containing Objects Using Piezoelectric Direct Discharge Plasma and Plasma Jet. Biomolecules 14, 181. https://doi.org/10.3390/biom14020181 (2024) ------------- | 7.) | Kuzin, A.I., Kashirskaya, N.Ya., Solovchenko, A.E., Kochkina, A.M., Stepantsowa, L.V., Krasin, V.N., Konchekov, E.M., Lukanin, V.I., Sergeichev, K.F., Gudkova, V.V., Khort, D.O., Smirnov, I.G., 2024. Influence of Plasma-Activated Water on Foliar and Fruit Micronutrient Content and Plant Protection Efficiency. Horticulturae 10, 55. https://doi.org/10.3390/horticulturae10010055 (2024) ------------- | 8.) | Ye, Y., Zhou, Z., Wang, S., Fang, Z., 2024. Characteristics and Stability of Pulsed Gas–Liquid Discharge with the Addition of Photocatalysts. Plasma Chem Plasma Process 44, 335–352. https://doi.org/10.1007/s11090-023-10426-8 (2024) ------------- | 9.) | Gudkova, V.V., Razvolyaeva, D.A., Borzosekov, V.D., Konchekov, E.M., 2024. Features of the FOX and Griess Method for Assessing the Biological Activity of Plasma Treated Solutions. Plasma Chem Plasma Process 44, 305–334. https://doi.org/10.1007/s11090-023-10418-8 (2024) ------------- | 10.) | Rao N.R.H., et al 2023 Algal cell inactivation and damage via cold plasma-activated bubbles: Mechanistic insights and process benefits, Chemical Engineering Journal, 454, art. no. 140304, DOI: 10.1016/j.cej.2022.140304 (2023) ------------- | 11.) | Mahaleh, MAS et al. 2023 Nitrogen Oxidation in a Multi-Pin Plasma System in the Presence and Absence of a Plasma-Liquid Interface; APPLIED SCIENCES-BASEL 13:7619; 10.3390/app13137619 (2023) ------------- | 12.) | Vu, TH et al. 2023 Charge-Reduced Particles via Self-Propelled Electrohydrodynamic Atomization for Drug Delivery Applications; ACS APPLIED MATERIALS & INTERFACES 15:29777-29788; 10.1021/acsami.3c02000 (2023) ------------- | 13.) | Supakitthanakorn, S; Ruangwong, OU and Boonyawan, D 2023 Inactivation of Cercospora lactucae-sativa through Application of Non-Thermal Atmospheric Pressure Gliding Arc, Tesla Coil and Dielectric Barrier Discharge Plasmas; APPLIED SCIENCES-BASEL 13:6643; 10.3390/app13116643 (2023) ------------- | 14.) | Hoffer, P et al. 2023 Streamer-Based Discharge on Water-Air Interface as a Source of Plasma-Activated Water: Conceptual Design and Basic Performance; PLASMA CHEMISTRY AND PLASMA PROCESSING; 10.1007/s11090-023-10325-y (2023) ------------- | 15.) | Butler, C et al. 2023 At-Field and On-Demand Nitrogenous Fertilizer Synthesis; ACS SUSTAINABLE CHEMISTRY & ENGINEERING 11(15):5803-5818; 10.1021/acssuschemeng.2c06551 (2023) ------------- | 16.) | Lee, Y.R., Kim, D.Y., Kim, J.Y., Lee, D.H., Bae, G.T., Jang, H., Park, J.Y., Jung, S., Jung, E.Y., Park, C.-S., Lee, H.-K., Tae, H.-S., 2023. Effects of Dielectric Barrier on Water Activation and Phosphorus Compound Digestion in Gas–Liquid Discharges. Nanomaterials 14, 40. https://doi.org/10.3390/nano14010040 (2023) ------------- | 17.) | Chiu, P.-H., Cheng, Y.-C., Lua, K.B., Wu, J.-S., 2023. DBD-streamer mode transition of atmospheric-pressure plasma jet applied on water with varying distance and AC power. Phys. Scr. 98, 115604. https://doi.org/10.1088/1402-4896/acfdd5 (2023) ------------- | 18.) | Matharoo, G.S., Walsh, J.L., 2023. Design and Characterization of a Solid-State Marx Generator for Plasma-Activated Water Generation. IEEE Trans. Plasma Sci. 51, 3070–3079. https://doi.org/10.1109/TPS.2023.3315874 (2023) ------------- | 19.) | Li, Z., Zhang, X., Qi, M., Zhao, X., Qu, Z., Wang, X., Li, W., Xu, D., 2023. Assessment of microbial species inactivation and purification of sewage by a gas–liquid diaphragm discharge plasma. Journal of Applied Physics 134, 093301. https://doi.org/10.1063/5.0159576 (2023) ------------- | 20.) | Adhami Sayad Mahaleh, M., Narimisa, M., Nikiforov, A., Gromov, M., Gorbanev, Y., Bitar, R., Morent, R., De Geyter, N., 2023. Nitrogen Oxidation in a Multi-Pin Plasma System in the Presence and Absence of a Plasma/Liquid Interface. Applied Sciences 13, 7619. https://doi.org/10.3390/app13137619 (2023) ------------- | 21.) | Supakitthanakorn, S., Ruangwong, O.-U., Boonyawan, D., 2023. Inactivation of Cercospora lactucae-sativa through Application of Non-Thermal Atmospheric Pressure Gliding Arc, Tesla Coil and Dielectric Barrier Discharge Plasmas. Applied Sciences 13, 6643. https://doi.org/10.3390/app13116643 (2023) ------------- | 22.) | V. Rathore, S. K. Nema: A comparative study of dielectric barrier discharge plasma device and plasma jet to generate plasma activated water and post-discharge trapping of reactive species, Phys. Plasmas 29, 033510 (2022), citation no. 21, INDEX (2022) ------------- | 23.) | V. Rathore, S. K. Nema: The role of different plasma forming gases on chemical species formed in plasma activated water (PAW) and their effect on its properties, Phys. Scr. 97, 065003 (2022), citation no. 54, WoS (2022) ------------- | 24.) | Y. Xin, J. Liu, Q. Wang, B. Sun: Plasma characteristics of atmospheric pinhole discharge in water, Vacuum 202, 111181 (2022), citation no. 31, WoS (2022) ------------- | 25.) | J. Jirešová, V. Scholtz, J. Julák, B. Šerá: Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties, Plants 11, 1471 (2022), citation no. 49, WoS (2022) ------------- | 26.) | M. Gromov, K. Leonova, N. Britun, N. De Geyter, R. Morent, R. Snyders, A. Nikiforov: Plasma nitrogen fixation in the presence of a liquid interface: role of OH radicals, React. Chem. Eng. 7, 1047-1052 (2022), citation no. X, WoS (2022) ------------- | 27.) | Gromov, M et al. 2022 Plasma-assisted nitrogen fixation: the effect of water presence, GREEN CHEMISTRY, 10.1039/d2gc03063b (2022) ------------- | 28.) | Ouzar, A and Kim, I 2022 Tetracycline degradation by nonthermal plasma: removal efficiency, degradation pathway, and toxicity evaluation, WATER SCIENCE AND TECHNOLOGY, 10.2166/wst.2022.339 (2022) ------------- | 29.) | Yepez, X et al. 2022 Recent Advances and Potential Applications of Atmospheric Pressure Cold Plasma Technology for Sustainable Food Processing, FOODS 11:1833, 10.3390/foods11131833 (2022) ------------- | 30.) | Hadinoto, K et al. 2022 Hybrid plasma discharges for energy-efficient production of plasma-activated water, CHEMICAL ENGINEERING JOURNAL 451:138643, 10.1016/j.cej.2022.138643 (2022) ------------- | 31.) | A. Mai-Prochnow, D. Alam , R. Zhou, T. Zhang, K. (Ken) Ostrikov, P. J. Cullen: Microbial decontamination of chicken using atmospheric plasma bubbles, Plasma Process. Polym. 18 (1), 2000052 (2020), citation no. 50, INDEX (2021) ------------- | 32.) | V. Rathore, S. K. Nema: Optimization of process parameters to generate plasma activated water and study of physicochemical properties of plasma activated solutions at optimum condition, J. Appl. Phys. 129, 084901 (2021), citation no. 67, WoS (2021) ------------- | 33.) | I. M. Piskarev: Chemical Transformations of Aqueous Solutions Activated by Remote Plasma Spark Discharge in Air, Nitrogen, or Oxygen, High Energy Chem. 55 (2), 145–149 (2021), citation no. 13, WoS (2021) ------------- | 34.) | I. M. Piskarev: The Formation of Ozone-Hydroxyl Mixture in Corona Discharge and Lifetime of Hydroxyl Radicals, IEEE Trans. Plasma Sci. 49 (4), 1363-1372 (2021), citation no. 21, WoS (2021) ------------- | 35.) | I. A. Wani: Review-Recent Advances in Biogenic Silver Nanoparticles & NanoComposite Based Plasmonic-Colorimetric and Electrochemical Sensors, J. Solid State Sci. Technol. 10 (4), 047003 (2021), citation no. 21, WoS (2021) ------------- | 36.) | H. Chen, D. Yuan, A. Wu, X. Lin, X. Li: Review of low-temperature plasma nitrogen fixation technology, Waste Dispos Sustain Energy 3, 201-217 (2021), citation no. 50, INDEX (2021) ------------- | 37.) | V. Veronico, P. Favia, F. Fracassi, R. Gristina, E. Sardella: Validation of colorimetric assays for hydrogen peroxide, nitrate and nitrite ions in complex plasma-treated water solutions, Plasma Process. Polym. 18, e2100062 (2021), citation no. 24, WoS (2021) ------------- | 38.) | M. Thulliez, O. Bastin, A. Nonclercq, A. Delchambre, F. Reniers: Gel models to assess distribution and diffusion of reactive species from cold atmospheric plasma: an overview for plasma medicine applications, J. Phys. D: Appl. Phys. 54, 463001 (2021), citation no. 122, INDEX (2021) ------------- | 39.) | K. Ulucan-Altuntas, M. Saleem, G.Tomei, E. Marotta, C. Paradisi: Atmospheric plasma-based approaches for the degradation of dimethyl phthalate (DMP) in water, J. Environ. Manag. 301, 113885 (2021), citation Tarabova, INDEX (2021) ------------- | 40.) | X. Hu, Y. Zhang, R. A. Wu, X. Liao, D. Liu, P. J. Cullen, R.-W. Zhou, T. Ding: Diagnostic analysis of reactive species in plasma-activated water (PAW): current advances and outlooks, J. Phys. D: Appl. Phys. 55 (2) 023002 (2021), citation no. 74, INDEX (2021) ------------- | 41.) | V. Nastasa, A-S. Pasca, R-N. Malancus, A-C. Bostanaru, L-I. Ailincai, E-L. Ursu, A-L. Vasiliu, B. Minea, E. Hnatiuc, M. Mares: Toxicity Assessment of Long-Term Exposure to Non-Thermal Plasma Activated Water in Mice, Int. J. Mol. Sci. 22, 11534 (2021), citation no. 5, WoS (2021) ------------- | 42.) | H. Mahdikia, B. Shokri, K. Majidzadeh-A, AC. Bostanaru, LI. Ailincai, EL. Ursu, AL. Vasiliu, B. Minea, E. Hnatiuc, M. Mares: The Feasibility Study of Plasma-activated Water as a Physical Therapy to Induce Apoptosis in Melanoma Cancer Cells In-vitro, Iran J. Pharm. Res. 20(3), 337–350 (2021), citation no. 22, WoS (2021) ------------- | 43.) | R. Nastase, E. Fourré, M. Fanuel, Z. Falourd, I. Capron: Non thermal plasma in liquid media: Effect on inulin depolymerization and functionalization, Carbohydrate Polym. 231, 115704 (2020), citation Tarabova, WoS (2020) ------------- | 44.) | R. Zhou, R. Zhou, P. Wang, Y. Xian, A. Mai-Prochnow, X. Lu, P. J. Cullen, K. Ostrikov, K. Bazaka: Plasma activated water (PAW): generation, origin of reactive species and biological applications, J. Phys. D: Appl. Phys. 53 (30) 303001 (2020), citation no. 118, WoS (2020) ------------- | 45.) | L. Yang, X. Wang, D. Zhu, Q. Zhang, T. Xi, D. Liu, J. Niu, F. Hu: Mechanism of Amoxicillin Degradation in Water Treated by Atmospheric-Pressure Air Microplasma, IEEE Trans. Plasma Sci. 48 (4), 953-960 (2020), citation no. 25, WoS (2020) ------------- | 46.) | J.-P. Liang, Z.-L. Zhao, X.-F. Zhou, D.-Z. Yang, H. Yuan, W.-C. Wang, J.-J. Qiao: Comparison of gas phase discharge and gas-liquid discharge for water activation and methylene blue degradation, Vacuum 181, 109644 (2020), citation no. 28, Wos (2020) ------------- | 47.) | N. C. Roy, C. Pattyn, A. Remy, N. Maira, F. Reniers: NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions, Plasma Process. Polym. 18 (3), e2000087 (2020), citation no. 27, WoS (2020) ------------- | 48.) | R. J. Wandell, H. Wang, R. K. M. Bulusu, R. O. Gallan, B. R. Locke: Formation of Nitrogen Oxides by Nanosecond Pulsed Plasma Discharges in Gas–Liquid Reactors, Plasma Chem. Plasma Process. 39 (3), 643-666 (2019), citation no. 73, WoS (2019) ------------- | 49.) | A. Starek, J. Pawlat, B. Chudzik, M. Kwiatkowski, P. Terebun, A. Sagan, D. Andrejko: Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage, Sci. Reports 9, 8407 (2019), citation no. 3, WoS (2019) ------------- | 50.) | Y. Gorbanev, A. Bogaerts: Chemical Detection of Short-Lived Species Induced in Aqueous Media by Atmospheric Pressure Plasma, Chapter in: Atmospheric Pressure Plasma - from Diagnostics to Applications, Edited by A. Nikiforov and Z. Chen, IntechOpen (2019) (2019) ------------- | 51.) | N. Wardenier, Y. Gorbanev, I. Van Moer, A. Nikiforov, S. W.H.Van Hulle, P. Surmont, F. Lynen, C. Leys, A. Bogaerts, P. Vanraes: Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process, Water Research 161, 549-559 (2019), citation no. 33, WoS (2019) ------------- | 52.) | Y. Guo, S. Li, Z. Wu, Y. Han, N. Wang: Interaction between electrospray using ionic liquid and simultaneous corona discharge under positive and negative polarity, Phys. Plasmas 26, 073511 (2019), citation no. 39, WoS (2019) ------------- | 53.) | R. Peverall, G. A. D. Ritchie: Spectroscopy techniques and the measurement of molecular radical densities in atmospheric pressure plasmas, Plasma Source Sci. Technol. 28, 073002 (2019), citation no. 264, WoS (2019) ------------- | 54.) | R.K.M. Bulusu, R. J. Wandell, R. O. Gallan, B. R. Locke: Nitric oxide scavenging of hydroxyl radicals in a nanosecond pulsed plasma discharge gas-liquid reactor, J. Phys. D: Appl. Phys. 52 (50) 504002 (2019), WoS (2019) ------------- | 55.) | J. Cheng, Q. Chen, G. Fridman, H.-F. Ji: A colorimetric method for comparison of oxidative strength of DBD plasma, Sensors and Actuators Reports 1, 100001 (2019), citation nol 20, WoS (2019) ------------- | 56.) | L. Patinglag: Development of a microfluidicatmospheric - pressure plasma reactor forwater treatment, PhD Thessis, Manchester Metropolitan University, Manchester (UK), 193 p. (2019). (2019) ------------- | 57.) | Y. Gorbanev, A. Privat-Maldonado, A. Bogaerts: Analysis of short-lived reactive species in plasma-air-water systems: The do’s and the don’ts, Anal. Chem. 90(22), 13151-13158 (2018), cit. 42, WoS (2018) ------------- | 58.) | B. R. Locke, P. Lukeš: Special issue: Plasma and Liquids, Plasma Process. Polym. 15, e1815062 (2018), citation no. 8, INDEX (2018) ------------- | |