Search:  

Division of Environmental Physics - User: igor
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava


Kinetic plasma chemistry model of pulsed transient spark discharge in air coupled with nanosecond time-resolved imaging and spectroscopy

Janda M., Hensel K., Machala Z.
J. Phys. D: Appl. Phys. 51 (33), 334002 (2018)

download  


Abstract:

Based on experimental results, transient spark (TS) discharge in atmospheric air is an efficient source of NOx for biomedical applications with a negligible O3 production. The TS discharge is characterized by short (~10 ns) high current (~A) pulses initiated by streamer. The time resolved optical imaging and spectroscopy of the TS discharge revealed that the primary streamer (ionization wave) is followed by the secondary streamer, enabling us to reconstruct the temporal evolution of the reduced electric field strength E/N(t). This was then used for a chemical kinetic model of the primary and the secondary streamer phases of the TS discharge. In this chemical kinetic modeling, we focus on the generation of selected reactive oxygen and nitrogen species (RONS) with antibacterial and other biological effects: O, N, NO, NO2, and O3. We proved that the secondary streamer plays a more important role in the induced chemistry than the primary streamer. In the simulation with the secondary streamer, the densities of RONS were increased by an order of magnitude when compared to the simulation without the secondary streamer, despite the same peak electron densities. The dominant intermediate product of the secondary streamer chemistry is atomic oxygen. Without the spark phase, this would lead to the generation of ozone as the dominant final product. However, in the spark pulse phase following the streamer(s), the chemistry is twisted towards dominant production of NOx.


Citations:

1.)Abdelaziz, AA et al. 2023 Toward Reducing the Energy Cost of NOx Formation in a Spark Discharge Reactor through Pinpointing Its Mechanism; SUSTAINABLE CHEMISTRY & ENGINEERING 11(10):4106-4118; 10.1021/acssuschemeng.2c06535
(2023)
-------------
2.)Lin, J et al. 2023 Insights into reactivity and bactericidal effects of water activated by He and Ar plasma jets; PLASMA PROCESSES AND POLYMERS 20(4):xxxx; 10.1002/ppap.202200173
(2023)
-------------
3.)Nayak, G et al. 2023 Non-OH-driven liquid-phase chemistry in water microdroplets; PLASMA PROCESSES AND POLYMERS 20(5):xxx; 10.1002/ppap.202200222
(2023)
-------------
4.)M. G. Silva, L. W. S. Crispim, M. Y. Ballester: Modeling spark-plug discharge in humid air, Advances 12, 025008 (2022), citation no. 27, INDEX
(2022)
-------------
5.)Martell, BC; Strobel, LR; Guerra-Garcia, C 2022 DC-driven positive streamer coronas in airflow, PLASMA SOURCES SCIENCE and TECHNOLOGY 31, 085014, 10.1088/1361-6595/ac844a
(2022)
-------------
6.)Kang, TM et al. 2022 The inactivation efficacy of plasma-activated acetic acid against Salmonella Typhimurium cells and biofilm, JOURNAL OF APPLIED MICROBIOLOGY 133:3007-3019, 10.1111/jam.15757
(2022)
-------------
7.)Strobel, LR et al. 2022 Electric field measurements of DC-driven positive streamer coronas using the E-FISH method, APPLIED PHYSICS LETTERS 121:114102, 10.1063/5.0100941
(2022)
-------------
8.)K. Leksakul, N. Vichiansan, P. Kaewkham, B. Hattaphasu: Generating Nitrate and Nitrite on Green Oak Lettuce in Hydroponic Farming by Plasma System, Appl. Engineer. Agri. 37 (1), 105-112, (2021), citation no. X, WoS
(2021)
-------------
9.)A. Tejero-del-Caz, V. Guerra, N. Pinhao, C. D. Pintassilgo, L. L. Alves: On the quasi-stationary approach to solve the electron Boltzmann equation in pulsed plasmas, Plasma Sources Sci. Technol. 30, 065008 (2021), citation no. 11, WoS
(2021)
-------------
10.)P. Ranieri, N. Sponsel, J. Kizer, M. Rojas, Pierce, R. Hernández, L. Gatiboni, A. Grunden, K. Stapelmann: Plasma agriculture: Review from the perspective of the plant and its ecosystem, Plasma Process. Polym. X, e2000162 (2020), WoS neE
(2021)
-------------
11.)A. Rezaeinezhad, H. Mirmiranpour, H. Ghomi: Effect of the controlled-atmosphere helium plasma jet on chemical modification of glycated enzymatic protein, Contrib. Plasma Phys. X, e202100115 (2021), WoS neE
(2021)
-------------
12.)Y. M. Zhao, S. Ojha, C. M. Burgess, D. W. Sun, B. K. Tiwari: Influence of various fish constituents on inactivation efficacy of plasma-activated water, Int. J. Food Sci. Technol. 55 (6) SI 2630-2641 (2020), citation no. X, WoS
(2020)
-------------
13.)Z. Xu, X. Zhou, W. Yang, Y. Zhang, Z. Ye, S. Hu, C. Ye, Y. Li, Y. Lan, J. Shen, X. Ye, F. Yang, C. Cheng: In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilms, Plasma Process. Polym. X, E1900270 (2020), WoS
(2020)
-------------
14.)T. Liu, Y. Zeng , J. Chen, D. Wei, Q. Zeng, Y. Fu, Y. Fu, F. Yang, F. Feng: Acinetobacter Baumannii Sterilization Using DC Corona Discharge, IEEE Trans. Plasma Sci. 49 (1), 317-325 (2020), citation no. 39, WoS
(2020)
-------------
15.)Y.-M. Zhao, S. Ojha, C. M. Burgess, D.-W. Sun, B. K Tiwari: Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state, J. Appl. Microbio. 129, 1248-1260 (2020), citation X, WoS neE
(2020)
-------------
16.)E. Feizollahi, B. Iqdiam,T. Vasanthan, M. S. Thilakarathna, M. S. Roopesh: Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains, Appl. Sci. 10 (10), 3530 (2020), WoS neE
(2020)
-------------
17.)P. Seyfi, A. Khademi, S. Ghasemi, A. Farhadizadeh, H. Ghomi: The effect of mixed electric field on characteristic of Ar-N-2 plasma jets for TiN surface treatment, J. Phys. D. Appl. Phys. 53 (12), 125201 (2020), WoS neE
(2020)
-------------
18.)N. Popov, N. Babaeva, G. Naidis: Recent advances in the chemical kinetics of non-equilibrium plasmas, J. Phys. D: Appl. Phys. 52 (16), 160301 (2019), citation no. 8, INDEX
(2019)
-------------
19.)R. J. Wandell, H. Wang, R. K. M. Bulusu, R. O. Gallan, B. R. Locke: Formation of Nitrogen Oxides by Nanosecond Pulsed Plasma Discharges in Gas–Liquid Reactors, Plasma Chem. Plasma Process. 39 (3), 643-666 (2019), citation no. 72, WoS
(2019)
-------------
20.)K. Tachibana, T. Nakamura: Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water, J. Phys. D. Appl. Phys. 52, 385202 (2019), citation no. 42, INDEX
(2019)
-------------
21.)M. Simek, Z. Bonaventura: Non-equilibrium kinetics of the ground and excited states in N-2-O-2 under nanosecond discharge conditions: extended scheme and comparison with available experiments observations, J. Phys. D: Appl. Phys. 51, 504004 (2018), citation no. X, INDEX
(2018)
-------------


HOME
NEWS
STAFF
RESEARCH
PUBLICATIONS
STUDENTS
LINKS
CONTACT

Post-doctoral positions



 

User: igor

Logout