Citácie: 1.) | Chahine, G., Marathe, U., Collins, L., Thomas, V., Kumar, V., Arabi Hassen, A., Tekinalp, H., Ozcan, S., Vaidya, U., 2025. Effect of plasma treatment on LMPAEK/CF tape and composites manufactured by automated tape placement (ATP). Composites Part A: Applied Science and Manufacturing 188. https://doi.org/10.1016/j.compositesa.2024.108540 (2025) ------------- | 2.) | Abdo, A.I., Kopecki, Z., 2024. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Current Issues in Molecular Biology 46, 4885–4923. https://doi.org/10.3390/cimb46050294 (2024) ------------- | 3.) | Agus, R., Avino, F., Ibba, L., Myers, B., Zampieri, L., Martines, E., Howling, A., Furno, I., 2024. Implementing water recirculation in a novel portable plasma-activated water reactor enhances antimicrobial effect against Escherichia coli. Chemical Engineering Journal 486. https://doi.org/10.1016/j.cej.2024.149915 (2024) ------------- | 4.) | Aloui, N., Belgacem, I., Hamdan, A., 2024. Degradation of Methylene Blue by Using an Argon Microwave Plasma Jet in Humid Environment. Plasma Chemistry and Plasma Processing 44, 1971–1989. https://doi.org/10.1007/s11090-024-10494-4 (2024) ------------- | 5.) | Amaro-Gahete, J., Romero-Salguero, F.J., Garcia, M.C., 2024. Modified surfatron device to improve microwave-plasma-assisted generation of RONS and methylene blue degradation in water. Chemosphere 349. https://doi.org/10.1016/j.chemosphere.2023.140820 (2024) ------------- | 6.) | Benkrifa, F.Z., Abdelmalek, F., Sabri, K., Hachemi, C., Taibi, K., Addou, A., 2024. Removal of dye AG25 by a hybrid process of plasma-activated water and cobalt nanoferrite photocatalysis: part I. Journal of Nanoparticle Research 26. https://doi.org/10.1007/s11051-024-06054-8 (2024) ------------- | 7.) | Berlatto, É.T., Khalaf, P.I., 2024. Exploring Energy-Efficient Techniques and Chemical Kinetics in Reactive Nitrogen Species Production with Ambient Air Plasma for Plasma-Activated Water. Journal of the Brazilian Chemical Society 35. https://doi.org/10.21577/0103-5053.20240009 (2024) ------------- | 8.) | Boopathy, B., Mukherjee, D., Nishanth, V., Chowdhury, A.R., Chakravortty, D., Rao, L., 2024. Generation of Species-Specific High-Strength Plasma Activated Water at Neutral pH and its Antimicrobial Characteristics. Plasma Chemistry and Plasma Processing 44, 1003–1017. https://doi.org/10.1007/s11090-023-10439-3 (2024) ------------- | 9.) | Borkar, S.B., Negi, M., Acharya, T.R., Lamichhane, P., Kaushik, N., Choi, E.H., Kaushik, N.K., 2024. Mitigation of T3SS-mediated virulence in waterborne pathogenic bacteria by multi-electrode cylindrical-DBD plasma-generated nitric oxide water. Chemosphere 350. https://doi.org/10.1016/j.chemosphere.2023.140997 (2024) ------------- | 10.) | Bukhori, A., Guntoro, D., Sudradjat, Tri Sugiarto, A., 2024. Utilization of Plasma Technology to Control Weed Seed Germination. Journal of Tropical Crop Science 11, 200–205. https://doi.org/10.29244/jtcs.11.02.200-205 (2024) ------------- | 11.) | Chamorro, J.C., Denoya, G.I., Santamaría, B., Fina, B., Ferreyra, M., Cejas, E., Rodríguez, A., Vaudagna, S.R., Prevosto, L., 2024. Effects of the Plasma-Activated Water on the Quality and Preservation of Fresh-Cut Lettuce. IEEE Transactions on Plasma Science 52, 1936–1946. https://doi.org/10.1109/TPS.2023.3297009 (2024) ------------- | 12.) | Dedieu, P., Morand, G., Loubière, K., Ognier, S., Tatoulian, M., 2024. Microreactor designed for efficient plasma-liquid segmented flows. Lab on a Chip 24, 3898–3908. https://doi.org/10.1039/d4lc00315b (2024) ------------- | 13.) | Dorval, A., Stafford, L., Hamdan, A., 2024. Spark discharges at the interface of water and heptane: emulsification and effect on discharge probability. Journal of Physics D: Applied Physics 57. https://doi.org/10.1088/1361-6463/acfd39 (2024) ------------- | 14.) | Doshi, P., Scholtz, V., Oplíštilová, A., Khun, J., Klenivskyi, M., Julák, J., Šerý, M., Šerá, B., 2024. Effect of Transient Spark Discharge and Plasma Activated Water Treatments against Fusarium graminearum Infected Wheat Grains under Laboratory Conditions. Plasma Chemistry and Plasma Processing 44, 1689–1712. https://doi.org/10.1007/s11090-024-10479-3 (2024) ------------- | 15.) |
Droste, N.C., Hummert, M., Leenders, P., Mellmann, A., Becker, K., Kuczius, T., 2024. Plasma-Activated Tap Water with Oxidative Potential Has an Inactivating Effect on Microbiological Contaminants in Aqueous Suspensions. Pathogens 13. https://doi.org/10.3390/pathogens13070535 (2024) ------------- | 16.) | Espona-Noguera, A., Tampieri, F., Canal, C., 2024. Engineering alginate-based injectable hydrogels combined with bioactive polymers for targeted plasma-derived oxidative stress delivery in osteosarcoma therapy. International Journal of Biological Macromolecules 257. https://doi.org/10.1016/j.ijbiomac.2023.128841 (2024) ------------- | 17.) | Evran, E., Dasan, B.G., Tayyarcan, E.K., Boyaci, I.H., 2024. Effect of Sequential Treatment of Plasma Activated Water and Bacteriophage on Decontamination of Salmonella Typhimurium in Lettuce. Food and Bioprocess Technology 17, 3790–3799. https://doi.org/10.1007/s11947-024-03355-7 (2024) ------------- | 18.) | Fina, B.L., Santamaría, B., Ferreyra, M.G., Schierloh, L.P., Chamorro, J.C., Cejas, E., Prevosto, L., 2024. Innovative application of plasma-activated water in the inactivation of Escherichia coli: Temperature-dependent chemical processes leading to the synergistic microbicidal effect. Food Control 163. https://doi.org/10.1016/j.foodcont.2024.110530 (2024) ------------- | 19.) | Fujera, J., Hoffer, P., Prukner, V., Rotondo, P.R., Arora, G., Jirásek, V., Lukeš, P., Šimek, M., 2024. Surface DBD in moist air for nitrogen fixation: a comparative study of pulsed versus amplitude-modulated AC powered discharge. Journal of Physics D: Applied Physics 57. https://doi.org/10.1088/1361-6463/ad5f99 (2024) ------------- | 20.) | Gökmen, G.G., Rathod, N.B., Guzik, P., Kulawik, P., Akan, T., Kışla, D., Ozogul, F., 2024. Current approaches in water-assisted systems for foodborne microbial inactivation: A review. Trends in Food Science and Technology 143. https://doi.org/10.1016/j.tifs.2023.104284 (2024) ------------- | 21.) | Gulka, M., Balasubramanian, P., Shagieva, E., Copak, J., Khun, J., Scholtz, V., Jelezko, F., Stehlik, S., Cigler, P., 2024. Surface optimization of nanodiamonds using non-thermal plasma. Carbon 224. https://doi.org/10.1016/j.carbon.2024.119062 (2024) ------------- | 22.) | Hu, Z., Xu, W., Sun, Y., Xu, H., Xu, J., Huang, L., Yao, W., Yu, Z., Xie, Y., 2024. Ultrasound-assisted activation of PAW residual radicals in the concurrent elimination of ARB and ARGs: Process efficiency, mechanism and implication. Chemical Engineering Journal 482. https://doi.org/10.1016/j.cej.2024.148627 (2024) ------------- | 23.) | Jia, Y., Song, T., Dong, Y., Wang, X., Zhang, R., Zhao, P., Ma, S., Li, K., Liu, J., Zeng, G., Wang, Z., Zhang, H., Zhang, J., Guo, L., Liu, D., 2024a. Efficient inactivation effect of plasma-activated water on oral pathogens Streptococcus mutans and Porphyromonas gingivalis. Plasma Processes and Polymers 21. https://doi.org/10.1002/ppap.202400048 (2024) ------------- | 24.) | Jia, Y., Zhang, R., Zhao, P., Ma, S., Li, K., Wang, Z., Zhang, J., Guo, L., Zhao, Y., Liu, D., 2024b. Inactivation effects of plasma-activated saline prepared by the mixed gases of discharged air and different gases. Journal of Physics D: Applied Physics 57. https://doi.org/10.1088/1361-6463/ad55fb (2024) ------------- | 25.) |
Klenivskyi, M., Khun, J., Thonová, L., Vaňková, E., Scholtz, V., 2024. Portable and affordable cold air plasma source with optimized bactericidal effect. Scientific Reports 14. https://doi.org/10.1038/s41598-024-66017-w (2024) ------------- | 26.) | Klymenko, R., de Kroon, E., Agostinho, L.L.F., Fuchs, E.C., Woisetschläger, J., Hoeben, W.F.L.M., 2024. Characterization of a hyperbolic vortex plasma reactor for the removal of aqueous phase micropollutants. Journal of Physics D: Applied Physics 57. https://doi.org/10.1088/1361-6463/ad2b22 (2024) ------------- | 27.) | Kutasi, K., Péter, L., Tóth, Z., 2024. Plasma-deposited reactive species assisted synthesis of colloidal zinc-oxide nanostructures. Journal of Physics D: Applied Physics 57. https://doi.org/10.1088/1361-6463/ad44a4 (2024) ------------- | 28.) | Lee, Y.R., Kim, D.Y., Kim, J.Y., Lee, D.H., Bae, G.T., Jang, H., Park, J.Y., Jung, S., Jung, E.Y., Park, C.-S., Lee, H.-K., Tae, H.-S., 2024. Effects of Dielectric Barrier on Water Activation and Phosphorus Compound Digestion in Gas–Liquid Discharges. Nanomaterials 14. https://doi.org/10.3390/nano14010040 (2024) ------------- | 29.) | Malahlela, H.K., Belay, Z.A., Mphahlele, R.R., Sigge, G.O., Caleb, O.J., 2024. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety 23. https://doi.org/10.1111/1541-4337.13317 (2024) ------------- | 30.) | Miranda, F.S., Tavares, V.K.F., Silva, D.M., Milhan, N.V.M., Neto, N.F.A., Gomes, M.P., Pessoa, R.S., Koga-Ito, C.Y., 2024. Influence of Gas Type on Reactive Species Formation, Antimicrobial Activity, and Cytotoxicity of Plasma-Activated Water Produced in a Coaxial DBD Reactor. Plasma Chemistry and Plasma Processing 44, 1713–1733. https://doi.org/10.1007/s11090-024-10475-7 (2024) ------------- | 31.) | Ozen, E., Adhikari, K., Singh, R.K., 2024. Effect of Atmospheric Cold Plasma on the Physicochemical Properties and Volatile Compounds of Apple and Cantaloupe Juices. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-024-03458-1 (2024) ------------- | 32.) | Qian, J., Jin, Y., Yan, W., Zhang, J., Wang, J., 2024a. Sequential application of cold plasma in chicken breast: Improvement of meat tenderness and bactericidal mechanism against histamine-producing Raoultella sp. Food Bioscience 62. https://doi.org/10.1016/j.fbio.2024.105132 (2024) ------------- | 33.) | Qian, J., Yan, W., Sheng, X., Zhao, L., Zhang, J., Wang, J., Raghavan, V., 2024b. Mechanism of action of plasma-activated water on biomacromolecules in Salmonella Enteritidis: Biological effect, computer simulation, and transcriptomics-based analysis. Chemical Engineering Journal 496. https://doi.org/10.1016/j.cej.2024.153946 (2024) ------------- | 34.) | Qian, J., Yan, W., Zhang, W., Zhang, J., Wang, J., Raghavan, V., 2024c. Plasma-activated water: Perspective of the theoretical model, safety assessment and application in animal-derived products. Trends in Food Science and Technology 143. https://doi.org/10.1016/j.tifs.2023.104282 (2024) ------------- | 35.) | Saji, T.H.G., Vicent-Luna, J.M., Vlugt, T.J.H., Calero, S., Bagheri, B., 2024. Computing solubility and thermodynamic properties of H2O2 in water. Journal of Molecular Liquids 401. https://doi.org/10.1016/j.molliq.2024.124530 (2024) ------------- | 36.) | Shen, S., Tampieri, F., Garcia, M.C., Canal, C., 2024. Design and characterization of a nano-pulsed atmospheric pressure plasma jet for biomedical applications. Plasma Processes and Polymers 21. https://doi.org/10.1002/ppap.202400086 (2024) ------------- | 37.) | Shi, W., Yang, P., Song, P., Wu, J., 2024. Experimental study of the effect of gas discharge on ionic liquid electrospray. Plasma Science and Technology 26. https://doi.org/10.1088/2058-6272/ad1365 (2024) ------------- | 38.) | Taheri, D., Hajisharifi, K., Heydari, E., MirzaHosseini, F.K., Mehdian, H., Robert, E., 2024. Realtime RONS monitoring of cold plasma-activated aqueous media based on time-resolved phosphorescence spectroscopy. Scientific Reports 14. https://doi.org/10.1038/s41598-024-73585-4 (2024) ------------- | 39.) | Vaňková, E., Julák, J., Machková, A., Obrová, K., Klančnik, A., Možina, S.S., Scholtz, V., 2024. Overcoming antibiotic resistance: non-thermal plasma and antibiotics combination inhibits important pathogens. Pathogens and Disease 82. https://doi.org/10.1093/femspd/ftae007 (2024) ------------- | 40.) | Walden, R., Goswami, A., Scally, L., McGranaghan, G., Cullen, P.J., Pillai, S.C., 2024. Nonthermal plasma technologies for advanced functional material processing and current applications: Opportunities and challenges. Journal of Environmental Chemical Engineering 12. https://doi.org/10.1016/j.jece.2024.113541 (2024) ------------- | 41.) | Wang, M., Liang, J., Lu, K., Zhou, Z., Liu, Q., Yuan, H., Wang, W., Yang, D., 2024. Degradation of ciprofloxacin hydrochloride in a multiphase mixed system by subaquatic gas-liquid discharge plasma. Plasma Science and Technology 26. https://doi.org/10.1088/2058-6272/ad6706 (2024) ------------- | 42.) | Wang, Y., Cai, Z., Sang, X., Deng, W., Zeng, L., Wang, J., Zhang, J., 2024. LC-MS-based lipidomics analyses of alterations in lipid profiles of Asian sea bass (Lates calcarifer) induced by plasma-activated water treatment. Food Research International 177. https://doi.org/10.1016/j.foodres.2023.113866 (2024) ------------- | 43.) | Wei, Q., Yuan, Y., Gu, H., Raghavan, V., Zhang, J., Wang, J., 2024. Comparison of reactive species in plasma activated water from two devices and their preservation efficacy on noodles during storage. Food Control 160. https://doi.org/10.1016/j.foodcont.2024.110349 (2024) ------------- | 44.) | Xiong, L., Feng, L., Nie, M., Li, D., Zhang, Z., Liu, C., Dai, Z., Xiao, Y., Xu, Y., 2024. Effect of Plasma-Activated Water (PAW) on the Postharvest Quality of Shepherd’s Purse (Capsella bursa-pastoris). Foods 13. https://doi.org/10.3390/foods13050703 (2024) ------------- | 45.) | Zhao, P., Jia, Y., Ma, S., Zhang, R., Li, K., Song, T., Zheng, J., Zhang, J., Guo, L., Liu, D., Wang, X., Rong, M., 2024. Comparison of plasma-activated saline prepared with plasma gases with different N2/O2 ratios activated by gliding arc discharge. Journal of Physics D: Applied Physics 57. https://doi.org/10.1088/1361-6463/ad687e (2024) ------------- | 46.) | Hadinoto, K et al 2023 Hybrid plasma discharges for energy-efficient production of plasma-activated water, CHEMICAL ENGINEERING JOURNAL 451:138643, 10.1016/j.cej.2022.138643 (2023) ------------- | 47.) | Rao N.R.H., et al 2023 Algal cell inactivation and damage via cold plasma-activated bubbles: Mechanistic insights and process benefits, Chemical Engineering Journal, 454, art. no. 140304, DOI: 10.1016/j.cej.2022.140304 (2023) ------------- | 48.) | Patra, A et al. 2023 Effect of Plasma activated water (PAW) on physicochemical and functional properties of foods; FOOD CONTROL 142:109268; 10.1016/j.foodcont.2022.109268 (2023) ------------- | 49.) | Armenise, V et al. 2023 The effect of different cold atmospheric plasma sources and treatment modalities on the generation of reactive oxygen and nitrogen species in water; PLASMA PROCESSES AND POLYMERS 20; 10.1002/ppap.202200182 (2023) ------------- | 50.) | Liu, K et al. 2023 Plasma-electrified postharvest preservation of Citrus sinensis: Process technology and freshness-keeping and anticorrosion effects; PLASMA PROCESSES AND POLYMERS 20; 10.1002/ppap.202200134 (2023) ------------- | 51.) | Lin, J et al. 2023 Insights into reactivity and bactericidal effects of water activated by He and Ar plasma jets; PLASMA PROCESSES AND POLYMERS 20; 10.1002/ppap.202200173 (2023) ------------- | 52.) | Li, YQ et al. 2023 Plasma-activated ethanol solution and it's decontamination effect; HIGH VOLTAGE; 10.1049/hve2.12299 (2023) ------------- | 53.) | Tampieri, F et al. 2023 Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate; BIOMATERIALS SCIENCE 11:4845-4858; 10.1039/d3bm00212h (2023) ------------- | 54.) | Poramapijitwat, P et al. 2023 Selective Cytotoxicity of Lung Cancer Cells-A549 and H1299-Induced by Ringer's Lactate Solution Activated by a Non-thermal Air Plasma Jet Device, Nightingale((R)); PLASMA CHEMISTRY AND PLASMA PROCESSING 43:805-830; 10.1007/s11090-023-10330-1 (2023) ------------- | 55.) | Hamdan, A et al. 2023 Interaction of a Pulsed Nanosecond Discharge in Air in Contact with a Suspension of Crystalline Nanocellulose (CNC); PLASMA CHEMISTRY AND PLASMA PROCESSING 43:849-865; 10.1007/s11090-023-10335-w (2023) ------------- | 56.) | Bennett, C et al. 2023 Comparison of plasma technology for the study of herbicide degradation; RSC ADVANCES 13:14078-14088; 10.1039/d3ra00459g (2023) ------------- | 57.) | Hamdan, A and Dorval, A 2023 Spatial and temporal dynamics of single nanosecond discharges in air with water droplets; JOURNAL OF PHYSICS D-APPLIED PHYSICS 56:215202; 10.1088/1361-6463/acc53e (2023) ------------- | 58.) | Tampieri, F; Gorbanev, Y and Sardella, E 2023 Plasma-treated liquids in medicine: Let's get chemical; PLASMA PROCESSES AND POLYMERS; 10.1002/ppap.202300077 (2023) ------------- | 59.) | Zheng, QY et al. 2023 Plasma Agricultural Nitrogen Fixation Using Clean Energies: New Attempt of Promoting PV Absorption in Rural Areas; PROCESSES 11:2030; 10.3390/pr11072030 (2023) ------------- | 60.) | Xi, DK et al. 2023 Impact of microsecond-pulsed plasma-activated water on papaya seed germination and seedling growth; CHINESE PHYSICS B 31:128201; 10.1088/1674-1056/ac904e (2023) ------------- | 61.) | Chamorro, JC et al. 2023 Effects of the Plasma-Activated Water on the Quality and Preservation of Fresh-Cut Lettuce; IEEE TRANSACTIONS ON PLASMA SCIENCE; 10.1109/TPS.2023.3297009 (2023) ------------- | 62.) | Feizollahi, E et al. 2023 Reduction of deoxynivalenol during barley steeping in malting using plasma activated water and the determination of major degradation products; JOURNAL OF FOOD ENGINEERING 352:111525; 10.1016/j.jfoodeng.2023.111525 (2023) ------------- | 63.) | Yang, Q et al. 2023 Plasma-enhanced evaporation and its impact on plasma properties and gaseous chemistry in a pin-to-water pulsed discharge; PLASMA PROCESSES AND POLYMERS 20; 10.1002/ppap.202300002 (2023) ------------- | 64.) | Zhao YL et al. 2023 Plasma-activated liquids for mitigating biofilms on food and food contact surfaces; COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY 22:1654-1685; 10.1111/1541-4337.13126 (2023) ------------- | 65.) | Xiao, A; Liu, DW and Li, Y 2023 Plasma-Activated Tap Water Production and Its Application in Atomization Disinfection; APPLIED SCIENCES-BASEL 13:3015; 10.3390/app13053015 (2023) ------------- | 66.) | Farhadi, M and Sohbatzadeh, F 2023 Influence of a transient spark plasma discharge on producing high molecular masses of chemical products from l-cysteine; SCIENTIFIC REPORTS 13; 10.1038/s41598-023-28736-4 (2023) ------------- | 67.) | Lu, HY et al. 2023 Degradation of atrazine in river sediment by dielectric barrier discharge plasma (DBDP) combined with a persulfate (PS) oxidation system: response surface methodology, degradation mechanisms, and pathways; ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH; 10.1007/s11356-022-24927-0 (2023) ------------- | 68.) | Guo, L et al. 2023 Inactivation of Salmonella enteritidis on the surface of eggs by air activated with gliding arc discharge plasma; FOOD CONTROL 148:109662; 10.1016/j.foodcont.2023.109662 (2023) ------------- | 69.) | Guo, L et al. 2023 Inactivation effects of the mist nebulized with plasma-activated air on Pseudomonas aeruginosa through the simulated respiratory tract; PLASMA PROCESSES AND POLYMERS; 10.1002/ppap.202200204 (2023) ------------- | 70.) | Gott, RP et al. 2023 Plasma activated water: a study of gas type, electrode material, and power supply selection and the impact on the final frontier; PHYSICAL CHEMISTRY CHEMICAL PHYSICS 25:5130-5145; 10.1039/d2cp03489a (2023) ------------- | 71.) | Katsaros, G et al. 2023 Production, characterization, microbial inhibition, and in vivo toxicity of cold atmospheric plasma activated water; INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES 84:103265; 10.1016/j.ifset.2022.103265 (2023) ------------- | 72.) | Ran, C., Liu, K. 2023 Tuning the ONOOH of plasma-activated water: Effect of the N2/O2 ratio and post-discharge duration, IEEE 6th International Electrical and Energy Conference, CIEEC 2023 (2023) ------------- | 73.) | Zhou, R., Zhang, T., Zhou, R., 2023. Pulsed Discharges for Water Activation and Plasma-Activated Water Production. Springer Series in Plasma Science and Technology Part F1094, 325–347. https://doi.org/10.1007/978-981-99-1141-7_11 (2023) ------------- | 74.) | Yu, J., Xu, A., Huang, B., Deng, Y., Liu, J., Liu, Y., 2023. Improvement of Hydrophobic Migration and Flashover Characteristics of Contaminated Silicone Rubber by Pulsed Gliding Arc Plasma in Ambient Air [脉冲滑动弧空气等离子体提升染污硅橡胶憎水性及闪络特性]. Gaodianya Jishu/High Voltage Engineering 49, 3324–3334. https://doi.org/10.13336/j.1003-6520.hve.20221583 (2023) ------------- | 75.) | Veronico, V., Morelli, S., Piscioneri, A., Gristina, R., Casiello, M., Favia, P., Armenise, V., Fracassi, F., De Bartolo, L., Sardella, E., 2023. Anticancer Effects of Plasma-Treated Water Solutions from Clinically Approved Infusion Liquids Supplemented with Organic Molecules. ACS Omega 8, 33723–33736. https://doi.org/10.1021/acsomega.3c04061 (2023) ------------- | 76.) | Sojithamporn, P., Leksakul, K., Sawangrat, C., Charoenchai, N., Boonyawan, D., 2023. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 12. https://doi.org/10.3390/foods12244386 (2023) ------------- | 77.) | Qi, M., Zhao, X., Zhao, X., Zhang, H., Li, Z., Zhang, X., Fan, R., Li, Q., Zhang, J., Xu, D., 2023. Violet phosphorene nanosheets and cold atmospheric plasma for synergetic cancer therapy. Chemical Engineering Journal 475. https://doi.org/10.1016/j.cej.2023.145884 (2023) ------------- | 78.) | Punthi, F., Yudhistira, B., Gavahian, M., Chang, C.-K., Husnayain, N., Hou, C.-Y., Yu, C.-C., Hsieh, C.-W., 2023. Optimization of Plasma Activated Water Extraction of Pleurotus ostreatus Polysaccharides on Its Physiochemical and Biological Activity Using Response Surface Methodology. Foods 12. https://doi.org/10.3390/foods12234347 (2023) ------------- | 79.) | Prasad, K., Sasi, S., Weerasinghe, J., Levchenko, I., Bazaka, K., 2023. Enhanced Antimicrobial Activity through Synergistic Effects of Cold Atmospheric Plasma and Plant Secondary Metabolites: Opportunities and Challenges. Molecules 28. https://doi.org/10.3390/molecules28227481 (2023) ------------- | 80.) | Liu, X., Meng, X., Zhang, M., Li, K., Zhao, W., 2023. Inactivation Effect and Mechanism of Plasma Activated Water on Shewanella putrefaciens [等离子体活化水对腐败希瓦氏菌杀菌效果及机理]. Shipin Kexue/Food Science 44, 25–31. https://doi.org/10.7506/spkx1002-6630-20220520-264 (2023) ------------- | 81.) | Kyzek, S., Pistekova, S., Durcanyova, S., Sevcovicova, A., Galova, E., 2023. Mechanism of the action of non-thermal plasma on plasmid DNA. TOXICOLOGY LETTERS 384, S86. (2023) ------------- | 82.) | Kuang, Y., Zhang, C., Hu, X., Ren, C., Chen, G., Shao, T., 2023. Factors Influencing Nitrogen Fixation by Microbubbles Coupled with Nanosecond-Pulse Liquid Phase Discharges [纳秒脉冲液相放电耦合微气泡固氮影响因素分析]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society 38, 3960–3971. https://doi.org/10.19595/j.cnki.1000-6753.tces.221939 (2023) ------------- | 83.) | Hadinoto, K., Niemira, B.A., Trujillo, F.J., 2023a. A review on plasma-activated water and its application in the meat industry. Comprehensive Reviews in Food Science and Food Safety 22, 4993–5019. https://doi.org/10.1111/1541-4337.13250 (2023) ------------- | 84.) | Delic, L., Geric, M., Pehnec, G., Rinkovec, J., Jakovljevic, I., Godec, R., Zuzul, S., Matkovic, K., Beslic, I., Cvitkovic, A., Wild, P., Canu, I.G., Kopf, N.B., Gajski, G., 2023. Impact of air pollution on genome instability of the general population in Zagreb (Croatia): a retrospective study. TOXICOLOGY LETTERS 384, S85–S86. (2023) ------------- | 85.) | V. Medvecká, S. Omasta, M. Klas, S. Mošovská, S. Kyzek, A. Zahoranova: Plasma activated water prepared by different plasma sources: physicochemical properties and decontamination effect on lentils sprouts, Plasma Sci. Technol. 24, 015503 (2022), WoS (2022) ------------- | 86.) | T. Kaneko, H. Kato, …, K. Ishikawa: Functional nitrogen science based on plasma processing: quantum devices, photocatalysts and activation of plant defense and immune systems, Jpn. J. Appl. Phys. 61, SA0805 (2022), WoS (2022) ------------- | 87.) | K. Kosumsupamala, P. Thana, N. Palee, Lamasai, C. Kuensaen, Ngamjarurojana, P. Yangkhamman, D. Boonyawan: Air to H2‑N2 Pulse Plasma Jet for In‑Vitro Plant Tissue Culture Process: Source Characteristics, Plasma Chem. Plasma Process. 42 (3) 535-559 (2022), citation no. 27, WoS (2022) ------------- | 88.) | V. Veronico, F. Fracassi, P. Favia, R. Gristina, E. Sardella: Critical Aspects in Generation, Analysis and in vitro Testing of RONS in Plasma Treated Water Solutions for Cancer Treatments, Plasma Medicine X, xxx (2022), citation no. X, INDEX (2022) ------------- | 89.) | Boudjadar, A, Bouanaka, F and Rebiai, S 2022 Physical phenomena of a cold plasma jet model at atmospheric pressure PHYSICA SCRIPTA 97:125609, 10.1088/1402-4896/aca2fb (2022) ------------- | 90.) | Razzokov, J et al 2022 Understanding the effect of nitrosylation on dynamics of human epidermal growth factor: a mu s simulation study JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:475201, 10.1088/1361-6463/ac9148 (2022) ------------- | 91.) | Tsoukou, E, Bourke, P, Boehm, D 2022 Efficacy of plasma activated saline in a co-culture infection control model, SCIENTIFIC REPORTS 12:20230, 10.1038/s41598-022-20165-z (2022) ------------- | 92.) | Lin, J et al 2022 Plasma-enhanced microbial electrolytic disinfection: Decoupling electro- and plasma-chemistry in plasma-electrolyzed oxidizing water using ion-exchange membranes, WATER RESEARCH 225:119174, 10.1016/j.watres.2022.119174 (2022) ------------- | 93.) | Punith, N et al 2022 Generation of neutral pH high-strength plasma-activated water from a pin to water discharge and its bactericidal activity on multidrug-resistant pathogens, PLASMA PROCESSES AND POLYMERS 10.1002/ppap.202200133 (2022) ------------- | 94.) | Hoppanova, L and Krystofova, S 2022 Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives, INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23:11592, 10.3390/ijms231911592 (2022) ------------- | 95.) | Jovanovic, O, Puac, N and Skoro, N 2022 A comparison of power measurement techniques and electrical characterization of an atmospheric pressure plasma jet, PLASMA SCIENCE & TECHNOLOGY 24:105404, 10.1088/2058-6272/ac742b (2022) ------------- | 96.) | Han, QY et al 2022 The optimization of plasma activated water (PAW) generation and the inactivation mechanism of PAW on Escherichia coli, JOURNAL OF FOOD PROCESSING AND PRESERVATION, AR. e17120, 10.1111/jfpp.17120 (2022) ------------- | 97.) | Huang, LL et al 2022 Bactericidal effects of plasma-activated saline prepared by surface dielectric barrier discharge with different dielectric layers and working gases, PLASMA PROCESSES AND POLYMERS, AR. e2200110, 10.1002/ppap.202200110 (2022) ------------- | 98.) | Li, HP et al 2022 Applications of cold atmospheric plasmas (CAPs) in agriculture: a brief review and the novel development of a radio-frequency CAP jet generator for plant mutation, PLASMA SCIENCE & TECHNOLOGY 24:093001, 10.1088/2058-6272/ac67be (2022) ------------- | 99.) | Lu, X et al 2022 Discharge modes and liquid interactions for plasma-bubble discharges, JOURNAL OF APPLIED PHYSICS 132:073303, 10.1063/5.0094560 (2022) ------------- | 100.) | Perinban, S et al 2022 Evaluation of plasma-activated water characteristics and its process optimization, JOURNAL OF FOOD PROCESS ENGINEERING 45:e14156, 10.1111/jfpe.14156 (2022) ------------- | 101.) | Pipliya, S, Kumar, S and Srivastav, PP 2022 Inactivation kinetics of polyphenol oxidase and peroxidase in pineapple juice by dielectric barrier discharge plasma technology, INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES 80:103081, 10.1016/j.ifset.2022.103081 (2022) ------------- | 102.) | Leti, LI et al 2022 The Modulatory Effects of Non-Thermal Plasma on Seed\'s Morphology, Germination and Genetics-A Review, PLANTS-BASEL 11:2181, 10.3390/plants11162181 (2022) ------------- | 103.) | Dorval, A et al 2022 Statistical analysis of pulsed spark discharges in water: Effects of gap distance, electrode material, and voltage polarity on discharge characteristics, JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A 40:043006, 10.1116/6.0001923 (2022) ------------- | 104.) | Szulc, M et al 2022 A Simple and Compact Laser Scattering Setup for Characterization of a Pulsed Low-Current Discharge, APPLIED SCIENCES-BASEL 12:6915, 10.3390/app12146915 (2022) ------------- | 105.) | Szulc, M et al 2022 Spectroscopic Characterization of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure, APPLIED SCIENCES-BASEL 12:6366, 10.3390/app12136366 (2022) ------------- | 106.) | Szulc, M et al 2022 Influence of Pulse Amplitude and Frequency on Plasma Properties of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure, APPLIED SCIENCES-BASEL 12:6580, 10.3390/app12136580 (2022) ------------- | 107.) | Wang, W et al 2022 Nitrox surface discharge used for water activation: the reactive species and their correlation to the bactericidal effect, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:265203, 10.1088/1361-6463/ac61b1 (2022) ------------- | 108.) | Talviste, R et al 2022 Nitrite and Nitrate Production by NO and NO2 Dissolution in Water Utilizing Plasma Jet Resembling Gas Flow Pattern, PLASMA CHEMISTRY AND PLASMA PROCESSING 42:1101-1114, 10.1007/s11090-022-10270-2 (2022) ------------- | 109.) | Liu, YF et al 2022 1D fluid model of the interaction between helium APPJ and deionized water, JOURNAL OF PHYSICS D-APPLIED PHYSICS 55:255204, 10.1088/1361-6463/ac5eef (2022) ------------- | 110.) | Lin, B and Zhuang, CJ 2022 Adaptive strategies to fast multipole method in photoionisation calculations for streamer discharges, HIGH VOLTAGE 10.1049/hve2.12224 (2022) ------------- | 111.) | Razzokov, J et al 2022 Mechanistic Insight into Permeation of Plasma-Generated Species from Vacuum into Water Bulk, INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23:6330, 10.3390/ijms23116330 (2022) ------------- | 112.) | Jiresova, J et al 2022 Comparison of the Effect of Plasma-Activated Water and Artificially Prepared Plasma-Activated Water on Wheat Grain Properties, PLANTS-BASEL 11:1471, 10.3390/plants11111471 (2022) ------------- | 113.) | Girard-Sahun, F et al 2022 Direct Sensing of Superoxide and Its Relatives Reactive Oxygen and Nitrogen Species in Phosphate Buffers during Cold Atmospheric Plasmas Exposures, ANALYTICAL CHEMISTRY 94:5555-5565, 10.1021/acs.analchem.1c04998 (2022) ------------- | 114.) | Hu D., et al 2022 Study on the Characteristics of Nanosecond Pulse Gas-liquid Discharge in Atmospheric Pressure Argon Using a Needle-water Structure [大气压氩气纳秒脉冲针—水结构气液放电特性研究], High Voltage Apparatus, 58 (10), pp. 89 - 95, DOI: 10.13296/j.1001-1609.hva.2022.10.012 (2022) ------------- | 115.) | Peng B., et al 2022 Regulation of pulse DC power on the Long lived reactive species concentration of AC excited plasma in liquid phase, Proceedings of 2022 IEEE 5th International Electrical and Energy Conference, CIEEC 2022, pp. 2737 - 2744, DOI: 10.1109/CIEEC54735.2022.9846768 (2022) ------------- | 116.) | Ferreyra M., et al 2022 Water treatment with a pulsed corona discharge [Tratamiento de agua con una descarga corona pulsada], Anales de la Asociacion Fisica Argentina, 33 (Especial), pp. 11 - 15, DOI: 10.31527/analesafa.2022.fluidos.11 (2022) ------------- | 117.) | X. Liao, D. Liu, S. Chen, X. Ye, T. Ding: Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: kinetics and mechanisms, Environ. Technol. 42(1), 58-71 (2021), citation no. 42, WoS (2021) ------------- | 118.) | I. C. Gerber, I. Mihaila, V. Pohoata, I. Topala: Evolution of Electrical and Optical Parameters of a Helium Plasma Jet in Interaction With Liquids, IEEE Trans. Plasma Sci. 49 (2), 557-562 (2021), citation no. 36, WoS (2021) ------------- | 119.) | A. Mai-Prochnow, D. Alam , R. Zhou, T. Zhang, K. (Ken) Ostrikov, P. J. Cullen: Microbial decontamination of chicken using atmospheric plasma bubbles, Plasma Process. Polym. 18 (1), 2000052 (2020), citation no. 44, INDEX (2021) ------------- | 120.) | S. Siadati, M. Pet'kova, A.J. Kenari, S. Kyzek, E. Galova, A. Zahoranova: Effect of a non-thermal atmospheric pressure plasma jet on four different yeasts, J. Phys. D. 54(2), 025204 (2021), citation no. X, WoS (2021) ------------- | 121.) | Z. Liu, Y. Gao, D. Liu, B. Pang, S. Wang: Dynamic analysis of absorbance behavior and peak shift of RONS in plasma-activated water by UV absorption spectroscopy: dependency on gas impurity, pulse polarity, and solution pH, J. Phys. D. 54(1) 015202 (2020), citation no. X, WoS (2021) ------------- | 122.) | K. Liu, W. Ren, C. Ran, R. Zhou, W. Tang et al: Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions, J. Phys. D. Appl. Phys. 54 (6), 065201 (2021), citation no. 39, WoS (2021) ------------- | 123.) | H. Noori, J. Raud, R. Talviste, I. Jogi: Water Dissolution of Nitrogen Oxides Produced by Ozone Oxidation of Nitric Oxide, Ozone-science & Engineering xxx (2021), citation no. 29, WoS (2021) ------------- | 124.) | A. Soni, J. Choi, G. Brightwell: Plasma-Activated Water (PAW) as a Disinfection Technology for Bacterial Inactivation with a Focus on Fruit and Vegetables, Foods 10, 166 (2021), citation no. 44, WoS (2021) ------------- | 125.) | Y. Morabit, M. I. Hasan, R. D. Whalley, E. Robert, M. Modic, J, L. Walsh: A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications, Eur. Phys. J. D. 75, 32 (2021), citation no. 150, WoS (2021) ------------- | 126.) | W. J. Ning, J. Lai, J. Kruszelnicki, J. E. Foster, D. Dai, M. J. Kushner: Propagation of positive discharges in an air bubble having an embedded water droplet; Plasma Sources Sci. Technol. 30 (1), 015005 (2021), citation no. X, WoS (2021) ------------- | 127.) | Z. Kelar Tučeková, L. Vacek, R. Krumpolec, J. Kelar, M. Zemánek, M. Černák, F. Ružička: Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination, Molecules 26, 910 (2021), citation no. 58, WoS (2021) ------------- | 128.) | B. Machado-Moreira, B. K. Tiwari, K. G. Richards, F. Abram, C. M. Burgess: Application of plasma activated water for decontamination of alfalfa and mung bean seeds, Food Microbiology 96, 103708 (2021), citation no. X, INDEX (2021) ------------- | 129.) | D. Yang, X. F. Zhou, J. P. Liang, Q . Xu, H. Wang, K .Yang: Degradation of methylene blue in liquid using high voltage pulsed discharge plasma synergizing iron-based catalysts activated persulfate, J. Phys. D. Appl. Phys. 54 (24), 244002 (2021), citation no. X, WoS (2021) ------------- | 130.) | L. Lin, H.Q. Pho, L. Zong, S. Li, N. Pourali, E. Rebrov, N. N. Tran, K. (Ken) Ostrikov, V. Hessel: Microfluidic plasmas: Novel technique for chemistry and chemical engineering, Chem. Engineer. J. 417, 129355 (2021), citation no. 76, WoS (2021) ------------- | 131.) | S. Dong, L. Fan, Y. Ma, J. Du, Q. Xiang: Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: Kinetics and mechanisms, LWT - Food Sci. Technol. 145, 111322 (2021), citation Machala, WoS (2021) ------------- | 132.) | J. Tan, M.V. Karwe: Inactivation and removal of Enterobacter aerogenes biofilm in a model piping system using plasma-activated water (PAW), Innovative Food Sci. Emerging Technol. X, xxx (2021), citation no. X, INDEX (2021) ------------- | 133.) | K. Kutasi, N. Krstulovic, A. Jurov, K. Salamon, D. Popović, S. Milošević: Controlling the composition of plasma-activated water by Cu ions, Plasma Sources Sci. Technol. 30 (4), 045015 (2021), citation no. 10, WoS (2021) ------------- | 134.) | T. C. Huang, Y. T. Lai, P. H. Kuo, S. Y. Hsu, J. G. Duh: Activation of soy waste solution through plasma treatment, MRS Advances X, xxx (2021), citation no. 22, WoS (2021) ------------- | 135.) | V. M. Gómez-López, G. Pataro, B. Tiwari, M. Gozzi, M. Á. A. Meireles, S. Wang, B. Guamis, Z. Pan, H. Ramaswamy, S. Sastry, F. Kuntz, P. J. Cullen, S. K. Vidyarthi, B. Ling, J. M. Quevedo, A. Strasser, G. Vignali, P. C. Veggi, R. Gervilla, H. M. Kotilainen, M. Pelacci,J. Viganó, A. Morata: Guidelines on reporting treatment conditions for emerging technologies in food processing, Crit. Rev. Food. Sci. Nutr. X, xxx (2021), citation no. X, WoS (2021) ------------- | 136.) | R. Yu, Z. Liu, J. Lin, X. He, L. Liu, Q. Xiong, Q. Chen, K. Ostrikov: Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system, Plasma Sci. Technol. 23 (5), 055504 (2021), citation no. 46, WoS (2021) ------------- | 137.) | Z. Liu, D. Xu, B. Pang, S. Wang, S. Wang, Y. Gao, S. Peng, H. Chen , M. G. Kong: Evaluation of microbial species inactivation and purification of pond sewage by a custom‐built air surface discharge plasma, Plasma Process. Polym. X, xxx (2021), citation no. X, WoS (2021) ------------- | 138.) | Q. Wang, D. Salvi: Recent progress in the application of plasma-activated water (PAW) for food decontamination, Current Opinion Food Sci. 42, 51-60 (2021), citation no. 40, WoS (2021) ------------- | 139.) | A. Dzimitrowicz, P. Jamroz, P. Pohl, W. Babinska, D. Terefinko, W. Sledz, A. Motyka-Pomagruk: Multivariate Optimization of the FLC-dc-APGD-Based Reaction-Discharge System for Continuous Production of a Plasma-Activated Liquid of Defined Physicochemical and Anti-Phytopathogenic Properties, Int. J. Mol. Sci. 22, 4813 (2021), citation no. 46, WoS (2021) ------------- | 140.) | N. Misra, S. Bhatt, F. A. Khonsari, V. Kumar: State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19?, Plasma Process Polym. X, e2000215 (2021), citation no. 184, WoS (2021) ------------- | 141.) | Y. Liu, D. Liu, J. Zhang, B. Sun, S. Luo, H. Zhang, L. Guo, M. Rong, M. G. Kong: Fluid model of plasma–liquid interaction: The effect of interfacial boundary conditions and Henry’s law constants, AIP Advances 11, 055019 (2021), citation no. 60, WoS (2021) ------------- | 142.) | H. Mahdikia, B. Shokri, K. Majidzadeh: The feasibility study of plasma-activated water as physical therapy to induce apoptosis in melanoma cancer cells in vitro, Iran. J. Pharm. Research X, xxx (2021), citation no. 20 … duplicitne v clanku (2021) ------------- | 143.) | H. Mahdikia, B. Shokri, K. Majidzadeh: The feasibility study of plasma-activated water as physical therapy to induce apoptosis in melanoma cancer cells in vitro, Iran. J. Pharm. Research X, xxx (2021), citation no. 52 … duplicitne v clanku (2021) ------------- | 144.) | D. Z. Pai: Plasma-liquid interfacial layer detected by in situ Raman light sheet microspectroscopy, J. Phys. D. Appl. Phys. 54 (35), 355201 (2021), citation no. 29, WoS (2021) ------------- | 145.) | M. Wartel, F. Faubert, I. D. Dirlau, S. Rudz, N. Pellerin, D. Astanei, R. Burlica, B. Hnatiuc, S. Pellerin: Analysis of plasma activated water by gliding arc at atmospheric pressure: Effect of the chemical composition of water on the activation, J. Appl. Phys. 129, 233301 (2021), citation no. 11, WoS (2021) ------------- | 146.) | S. Raud, J. Raud, I. Jõgi, C.-T. Piller, T. Plank, R. Talviste, T. Teesalu, E. Vasar: The Production of Plasma Activated Water in Controlled Ambient Gases and its Impact on Cancer Cell Viability, Plasma Chem. Plasma Process. X, xxx (2021), citation no. 49, INDEX (2021) ------------- | 147.) | Z. Wang, Y. Qi,L. Guo, L. Huang, Z. Yao, L. Yang, G. Li, J. Chen, J. Yan, G. Niyazi: The bactericidal effects of plasma-activated saline prepared by the combination of surface discharge plasma and plasma jet, J. Phys. D Appl. Phys. 54 (38), 385202 (2021), citation no. X, WoS (2021) ------------- | 148.) | V. Veronico, P. Favia, F. Fracassi, R. Gristina, E. Sardella: Validation of colorimetric assays for hydrogen peroxide, nitrate and nitrite ions in complex plasma-treated water solutions, Plasma Process. Polym. X, e2100062 (2021), citation no. 13, WoS (2021) ------------- | 149.) | K. Sgonina, G. Bruno, S. Wyprich, K. Wende, J. Benedikt: Reactions of plasma-generated atomic oxygen at the surface of aqueous phenol solution: Experimental and modeling study, J. Appl. Phys. 130, 043303 (2021), citation no. 13, INDEX (2021) ------------- | 150.) | N. Nippatlapalli, K. Ramakrishnan, L. Philip: Enhanced degradation of complex organic compounds in wastewater using different novel continuous flow non – Thermal pulsed corona plasma discharge reactors, Environmental Research X, 111807 (2021), citation no. X, INDEX (2021) ------------- | 151.) | M. Balazinski, A. Schmidt-Bleker, J. Winter, T. von Woedtke: Peroxynitrous Acid Generated In Situ from Acidified H2O2 and NaNO2. A Suitable Novel Antimicrobial Agent?, Antibiotics 10, 1003 (2021), citation no. 34, WoS (2021) ------------- | 152.) | P. Dimitrakellis, M. Giannoglou, Z. M. Xanthou, E. Gogolides, P. Taoukis, G. Katsaros: Application of plasma‐activated water as an antimicrobial washing agent of fresh leafy produce, Plasma Process. Polym. X, xxx (2021), citation no. 24, INDEX (2021) ------------- | 153.) | A. Rezaeinezhad, H. Mirmiranpour, H. Ghomi: Effect of the controlled-atmosphere helium plasma jet on chemical modification of glycated enzymatic protein, Contrib. Plasma Phys. X, e202100115 (2021), citation no. 39, WoS (2021) ------------- | 154.) | W. Wang, Z. Liu, J. Chen, Z. Yao, H. Zhang, W. Xi, D. Liu, M. Rong: Surface air discharge used for biomedicine: the positive correlation among gaseous NO3, aqueous O2−/ONOO− and biological effects, J. Phys. D: Appl. Phys. 54 (49), 495201 (2021), citation no. X, WoS (2021) ------------- | 155.) | X. Hu, Y. Zhang, R. A. Wu, X. Liao, D. Liu, P. J. Cullen, R.-W. Zhou, T. Ding: Diagnostic analysis of reactive species in plasma-activated water (PAW): current advances and outlooks, J. Phys. D: Appl. Phys. 55 (2) 023002 (2021), citation no. 50, INDEX (2021) ------------- | 156.) | K. Kutasi, E. Tombácz: Efficient trapping of RONS in gelatin and physiological solutions, Plasma Process. Polym. X, xxx (2021), citation no. 11, INDEX (2021) ------------- | 157.) | S. Mošovská, V. Medvecká, M. Klas, S. Kyzek, Ľ. Valík, A. Mikulajová, A. Zahoranová: Decontamination of Escherichia coli on the surface of soybean seeds using plasma activated water, LWT FOOD SCIENCE AND TECHNOLOGY 154, 112720 (2021), citation Machala, WoS (2021) ------------- | 158.) | T. Darny, G. Bauville, M. Fleury, S. Pasquiers, J. Sousa: Periodic forced flow in a nanosecond pulsed cold atmospheric pressure argon plasma jet, Plasma Sources Sci. Technol. X, xxx (2021), citation no. 10, INDEX (2021) ------------- | 159.) | V. Veronico, P. Favia, F. Fracassi, R. Gristina, E. Sardella: The active role of organic molecules in the formation of long-lived reactive oxygen and nitrogen species in plasma-treated water solutions, Plasma Process. Polym. X, xxx (2021), citation no. 26, WoS (2021) ------------- | 160.) | L. Huang, L. Guo, Y. Qi, M. Chen, G. Niyazi, L. Yang, F. Zhang, J. Zhang, Z. Yao1, J. Yan, Z. Wang, D. Liu: Bactericidal effect of surface plasma under different discharge modes, Physics of Plasmas 28, 123501 (2021), citation no. 35, INDEX (2021) ------------- | 161.) | Z. Wang, S. Xu, D. Liu, C. Wang, J. Chen, J. Zhang, M. Zhu, J. Zhang, C. Liu, L. Gu, X. Wang, M. Rong: An integrated device for preparation of plasma-activated media with bactericidal properties: An in vitro and in vivo study, Contrib. Plasma Phys. X, xxx (2021), citation no. 23, WoS (2021) ------------- | 162.) | S. Simon, B. Salgado, M. I. Hasan, M. Sivertsvik, E. N. Fernandez, J. L. Walsh: Influence of Potable Water Origin on the Physicochemical and Antimicrobial Properties of Plasma Activated Water, Plasma Chem. Plasma Process. X, xxx (2021), citation no. 17, WoS (2021) ------------- | 163.) | V. Jirasek, Z. Koval'ova, B. Tarabova, P. Lukes: Leucine modifications by He/O-2 plasma treatment in phosphate-buffered saline: bactericidal effects and chemical characterization, J. Phys. D Appl. Phys. 54 (50), 505206 (2021) WoS (2021) ------------- | 164.) | Tang L., et al. 2021 The Application of Low-temperature Plasma Activated Water in Food Sterilization and Preservation [低温等离子体活化水在食品杀菌保鲜中的应用], Journal of Chinese Institute of Food Science and Technology, 21 (12), pp. 347 - 357, DOI: 10.16429/j.1009-7848.2021.12.037 (2021) ------------- | 165.) | K. Tachibana, J-S. Oh, T. Nakamura: Oxidation processes of NO for production of reactive nitrogen species in plasma activated water, J. Phys. D. Appl. Phys. 53(38), 385202 (2020), citation no. 55, WoS (2020) ------------- | 166.) | S. Wang, D. Z. Yang, R. Zhou , Z. Fang , W. Wang, K. Ostrikov: Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: Effect of grounding configuration, Plasma Process. Polym. 17, e1900146 (2020), citation 23, WoS (2020) ------------- | 167.) | K. H. Baek, H. I. Yong, J H Yoo, J. W. Kim, Y. S. Byeon, J. Lim, S. Y. Yoon, S. Ryu, C. Jo: Antimicrobial effects and mechanism of plasma activated fine droplets produced from arc discharge plasma on planktonic Listeria monocytogenes and Escherichia coli O157:H7, J. Phys. D. Appl. Phys. 53 124002 (2020), citation 18, WoS (2020) ------------- | 168.) | V. Gamaleev, N. Iwata , G. Ito, M. Hori, M. Hiramatsu, M. Ito: Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications, Appl. Sci. 10, 801 (2020), citation no. 16, WoS (2020) ------------- | 169.) | Y. Zhao, S. Ojha, C. M. Burgess, D. Sun, B. K. Tiwari: Influence of Various Fish Constituents on Inactivation Efficacy of Plasma Activated Water, Int. J. Food Sci. Technol. X, xxx (2020), citation Machala, INDEX (2020) ------------- | 170.) | A. Bisag, C. Bucci, S. Coluccelli, G. Girolimetti, R. Laurita, P. De Iaco, A. M. Perrone, M. Gherardi, L. Marchio, A. M. Porcelli, V. Colombo, G. Gasparre: Plasma-activated Ringer’s Lactate Solution Displays a Selective Cytotoxic Effect on Ovarian Cancer Cells, Cancers 12, 476 (2020), citation no. 38, WoS (2020) ------------- | 171.) | B. Maršálek, E. Maršálková, K. Odehnalová, F. Pochylý, P. Rudolf, P. Stahel, J. Rahel, J. Cech, S. Fialová. S. Zezulka: Removal of Microcystis aeruginosa through the Combined Effect of Plasma Discharge and Hydrodynamic Cavitation, Water 12, 8 (2020), citation no. 23, WoS (2020) ------------- | 172.) | Z. Xu, X. Zhou, W. Yang, Y. Zhang, Z. Ye, S. Hu, C. Ye, Y. Li, Y. Lan, J. Shen, X. Ye, F. Yang, C. Cheng: In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilms, Plasma Process. Polym. X, xxx (2020), citation no. 52, INDEX (2020) ------------- | 173.) | K. Liu, Z. Yang, S. Liu: Study of the Characteristics of DC Multineedle-to-Water Plasma-Activated Water and Its Germination Inhibition Efficiency: The Effect of Discharge Mode and Gas Flow, IEEE Trans. Plasma Sci. 48 (4), 969 - 979 (2020), citation no. 10, WoS (2020) ------------- | 174.) | V. Gamaleev, T. Tsutsumi, M. Hiramatsu, M. Ito. M. Hori: Generation and Diagnostics of Ambient Air Glow\r\nDischarge in Centimeter-Order Gaps, IEEE Access 8, 72607–72619 (2020), citation no. 22, WoS (2020) ------------- | 175.) | Y.-M. Zhao, S. Ojha, C. M. Burgess, D.-W. Sun, B. K Tiwari: Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state, J. Appl. Microbio. X, xxx (2020), citation Machala, INDEX (2020) ------------- | 176.) | S. Ma, W. Yan, Z. Bi, Z. Wang, Y. Song, D. Wang: Influence of water vapor concentration on discharge dynamics and reaction products of underwater discharge within a He/H2O-filled bubble at atmospheric pressure, Plasma Sci. Technol. 22 (8), 85406 (2020), citation no. 7, WoS (2020) ------------- | 177.) | L. Gao, X. Shi, X. Wu: Applications and challenges of low temperature plasma in pharmaceutical field, J. Pharmaceutical Analys. 11 (1), 28-36 (2020), citation no. 88, WoS (2020) ------------- | 178.) | P. Seyfi, A. Khademi, S. Ghasemi, A. Farhadizadeh, H. Ghomi: The effect of mixed electric field on characteristic of Ar-N-2 plasma jets for TiN surface treatment, J. Phys. D. Appl. Phys. 53 (12)125201 (2020), citation no. 26, WoS (2020) ------------- | 179.) | A. Filipić, I. Gutierrez-Aguirre, G. Primc, M. Mozetič, D. Dobnik: Cold Plasma, a New Hope in the Field of Virus Inactivation, Trends in Biotechnology 38(11), 1278-1291 (2020), citation no. 65, WoS (2020) ------------- | 180.) | E. Feizollahi, B. Iqdiam,T. Vasanthan, M. S. Thilakarathna, M. S. Roopesh: Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains, Appl. Sci. 10 (10), 3530 (2020), citation no. 37, WoS (2020) ------------- | 181.) | E. V. Sysolyatina, A. Y. Lavrikova , R. A. Loleyt , E. V. Vasilieva, M. A. Abdulkadieva, S. A. Ermolaeva, A. V. Sofronov: Bidirectional mass transfer‐based generation of plasma‐activated water mist with antibacterial properties, Plasma Process. Polym. X, xxx-xxx (2020), citation no. 52, INDEX (2020) ------------- | 182.) | J.-P. Liang, Z.-L. Zhao, X.-F. Zhou, D.-Z. Yang, H. Yuan, W.-C. Wang, J.-J. Qiao: Comparison of gas phase discharge and gas-liquid discharge for water activation and methylene blue degradation, Vacuum 181, 109644 (2020), citation no. 30, WoS (2020) ------------- | 183.) | P. Ranieri, N. Sponsel, J. Kizer, M. Rojas‐Pierce, R. Hernández, L. Gatiboni, A. Grunden, K. Stapelmann: Plasma agriculture: Review from the perspective of the plant and its ecosystem, Plasma Process. Polym. X, e2000162 (2020), citation no. 167, WoS (2020) ------------- | 184.) | S. Wang, Y. Liu, R. Zhou, F. Liu, Z. Fang, K. (Ken) Ostrikov, P. J. Cullen: Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics, Plasma Process. Polym. X, e2000135 (2020), citation no. 27, WoS (2020) ------------- | 185.) | Y. M. Zhao, A. Patange, D. W. Sun, B. Tiwari: Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry, Compr. Rev. Food Sci. Food Safety 19(6), 3951-3979 (2020), citation Machala, WoS (2020) ------------- | 186.) | B. Yadav, M. S. Roopesh: In-package atmospheric cold plasma inactivation of Salmonella in freeze-dried pet foods: Effect of inoculum population, water activity, and storage, Innovative Food Sci. Emerg. Technol. 66, 102543 (2020), citation Machala, WoS (2020) ------------- | 187.) | H. Akiyama, M. Akiyama: Pulsed Discharge Plasmas in Contact with Water and their Application, IEEJ Trans. Electr. Electron. Engineer. 16(1), 6-14 (2020), citation no. 19, WoS (2020) ------------- | 188.) | K. H. Baek, Y. S Heo, J. Y. Park,T. Kang ,Y. E. Lee, J. Lim, S. B. Kim, C. Jo: Inactivation of Salmonella Typhimurium by Non-Thermal Plasma Bubbles: Exploring the Key Reactive Species and the Influence of Organic Matter, Foods 9 (11), 1689 (2020) citation no. 19, WoS (2020) ------------- | 189.) | J. Čech, P. St’ahel, J. Ráhel’, L. Prokeš, P. Rudolf, E. Maršálková, B. Maršálek: Mass Production of Plasma Activated Water: Case Studies of Its Biocidal Effect on Algae and Cyanobacteria, Water 12 (11), 3167 (2020), citation no. 3, INDEX (2020) ------------- | 190.) | P. Seyfi , A. Heidari , A. Khademi , M. Golghand , M. Gharavi , H. Ghomi: The effect of modulated electric field on characteristic of SDBD‐like plasma jet for surface modification, Contrib. Plasma Phys. X, e202000155 (2020), citation no. 16, WoS (2020) ------------- | 191.) | T. Liu, Y. Zeng , J. Chen, D. Wei, Q. Zeng, Y. Fu, Y. Fu, F. Yang, F. Feng: Acinetobacter Baumannii Sterilization Using DC Corona Discharge, IEEE Trans. Plasma Sci. 49 (1), 317-325 (2020), citation no. 16, WoS (2020) ------------- | 192.) | M. Kchaou, K. Abuhasel, M. Khadr, F. Hosni, M. Alquraish: Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies, Appl. Sci. 10 (17), 6040 (2020), citation no. X, WoS (2020) ------------- | 193.) | N. Popov, N. Babaeva, G. Naidis: Recent advances in the chemical kinetics of non-equilibrium plasmas, J. Phys. D: Appl. Phys. 52 (16), 160301 (2019), citation no. 12, INDEX (2019) ------------- | 194.) | J. P. Liang, X. F. Zhou, Z. L. Zhao, W. C. Wang, D. Z. Yang, H. Yuan: Reactive oxygen and nitrogen species in Ar + N-2 thorn O-2 atmospheric-pressure nanosecond pulsed plasmas in contact with liquid, Phys. Plasmas 26 (2), 023521 (2019), citation no. 27, WoS (2019) ------------- | 195.) | Z. Liu, W. Wang, D. Liu, C. Zhou, T. He, W. Xia, M. G. Kong: Experimental investigation of behavior of bullets dynamics and production of RONS in helium APPJs-liquid interaction: The effect of additive gas components, Phys. Plasmas 26, 053507 (2019), citation no. 12, WoS (2019) ------------- | 196.) | F. Girard-Sahun, V. Badets, P. Lefrancois, N. Sojic, F. Clement, S. Arbault: Reactive oxygen species generated by cold atmospheric plasmas in aqueous solution: successful electrochemical monitoring in situ under a high voltage system, Analyt. Chem. 91 (13), 8002-8007 (2019), citation no. 7, WoS (2019) ------------- | 197.) | A. Wright, B. Uprety, A. Shaw, G. Shama, F. Iza, H. Bandulasena: Effect of humic acid on E. coli disinfection in a microbubble-gas plasma reactor, J. Water Process Engineer. 31, 100881 (2019), citation no. 30, INDEX (2019) ------------- | 198.) | R. Peverall, G. A. D. Ritchie: Spectroscopy techniques and the measurement of molecular radical densities in atmospheric pressure plasmas, Plasma Source Sci. Technol. 28, 073002 (2019), citation no. 61, WoS (2019) ------------- | 199.) | V. Gamaleev, N. Iwata, M. Hori, M. Hiramatsu, M. Ito: Direct Treatment of Liquids Using Low-Current Arc in Ambient Air for Biomedical Applications, Appl. Sci. 9 (17), 3505 (2019), citation no. 51, INDEX (2019) ------------- | 200.) | C. Labay, I. Hamouda, F. Tampieri, M.-P. Ginebra, C. Canal: Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies, Sci. Reports 9, 16160 (2019), citation no. 35, WoS (2019) ------------- | 201.) | R. Talviste, S. Raud, I. Jogi, T. Plank, J. Raud, T. Teesalu: Investigation of a He micro plasma-jet utilized for treatment of prostatecancer cells, Plasma Res. Express 1, 045002 (2019), citation no. 38, INDEX (2019) ------------- | 202.) | J. Cheng, Q. Chen, G. Fridman, H.-F. Ji: A colorimetric method for comparison of oxidative strength of DBD plasma, Sensors and Actuators Reports 1, 100001 (2019), citation nol 19, WoS (2019) ------------- | 203.) | K. Tachibana, T. Nakamura: Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water, J. Phys. D: Appl. Phys. 52 (38) 385202 (2019), citation no. 28, WoS (2019) ------------- | |