Citácie: 1.) | Chen, B., Liu, Q., Li, X., Zhang, C., Guo, X., Yu, Q., Tang, Z., He, X., Su, W., Jiang, Y., 2024. Synthesis of NO by rotating sliding arc discharge reactor with conical-spiral electrodes. Plasma Science and Technology 26. https://doi.org/10.1088/2058-6272/ad6815 (2024) ------------- | 2.) | Chuea-uan, S., Boonyawan, D., Sawangrat, C., Thanapornpoonpong, S.-N., 2024. Using Plasma-Activated Water Generated by an Air Gliding Arc as a Nitrogen Source for Rice Seed Germination. Agronomy 14. https://doi.org/10.3390/agronomy14010015 (2024) ------------- | 3.) | Filgueira, G.A., Pessoa, R.S., Yamamoto, R.K., Alves, C., Da Silva Sobrinho, A.S., 2024. Plasma-Activated Tap Water by Gliding Arc Discharge Through Bubbles Using an Inverted Reactor Approach. IEEE Transactions on Plasma Science. https://doi.org/10.1109/TPS.2024.3431942 (2024) ------------- | 4.) | Koga-Ito, C.Y., Kostov, K.G., Miranda, F.S., Milhan, N.V.M., Azevedo Neto, N.F., Nascimento, F., Pessoa, R.S., 2024. Cold Atmospheric Plasma as a Therapeutic Tool in Medicine and Dentistry. Plasma Chemistry and Plasma Processing 44, 1393–1429. https://doi.org/10.1007/s11090-023-10380-5 (2024) ------------- | 5.) | Marcinauskas, L., Kavaliauskas, Ž., Jonynaitė, K., Uscila, R., Aikas, M., Keršulis, S., Strakšys, A., Stirkė, A., Stankevič, V., 2024. The Influence of Voltage on Gliding Arc Discharge Characteristics, the Composition of Air Plasma, and the Properties of BG-11 Medium. Applied Sciences (Switzerland) 14. https://doi.org/10.3390/app14052135 (2024) ------------- | 6.) | Miranda, F.S., Tavares, V.K.F., Silva, D.M., Milhan, N.V.M., Neto, N.F.A., Gomes, M.P., Pessoa, R.S., Koga-Ito, C.Y., 2024. Influence of Gas Type on Reactive Species Formation, Antimicrobial Activity, and Cytotoxicity of Plasma-Activated Water Produced in a Coaxial DBD Reactor. Plasma Chemistry and Plasma Processing 44, 1713–1733. https://doi.org/10.1007/s11090-024-10475-7 (2024) ------------- | 7.) | Nguyen, H.M., Salmasi, M.Z., Song, H., 2024. In-Liquid Plasma Catalysis: Tools for Sustainable H2-free Heavy Oils Upgrading. ChemistrySelect 9. https://doi.org/10.1002/slct.202304920 (2024) ------------- | 8.) | Ouzar, A., Goutomo, B.T., Nam, K., Kim, I.-K., 2024. Enhanced removal of malachite green from wastewater using nonthermal plasma gliding arc discharge combined with ferrate oxidation. Desalination and Water Treatment 320. https://doi.org/10.1016/j.dwt.2024.100743 (2024) ------------- | 9.) | Rosa, V., Cameli, F., Stefanidis, G.D., Van Geem, K.M., 2024. Integrating Materials in Non-Thermal Plasma Reactors: Challenges and Opportunities. Accounts of Materials Research 5, 1024–1035. https://doi.org/10.1021/accountsmr.4c00041 (2024) ------------- | 10.) | Theepharaksapan, S., Matra, K., Thana, P., Traiporm, T., Aryuwong, W., Tanakaran, Y., Lerkmahalikhit, Y., Malun, L., Ittisupornrat, S., 2024. The Potential of Plasma-Activated Water as a Liquid Nitrogen Fertilizer for Microalgae Cultivation. IEEE Transactions on Plasma Science 52, 2392–2402. https://doi.org/10.1109/TPS.2024.3362629 (2024) ------------- | 11.) | Zhang, C., Li, X., Shang, R., Liu, Q., Jiang, Y., He, X., Chen, B., 2024. Grape Preservation by Plasma Synthesized NO Fumigation. Springer Proceedings in Physics 398 SPP, 371–388. https://doi.org/10.1007/978-981-97-2245-7_30 (2024) ------------- | 12.) | Zhao, Z., Liu, G., Li, G., Ni, W., Liu, D., 2024. Reactive Oxygen and Nitrogen Species (RONS) Solubility Controlled Activation of Water by Atmospheric Pressure Air Spark Discharge. Plasma Chemistry and Plasma Processing 44, 945–963. https://doi.org/10.1007/s11090-024-10453-z (2024) ------------- | 13.) | Yu, BL et al. 2023 Development of nitric oxide generators to produce high-dose nitric oxide for inhalation therapy; NITRIC OXIDE-BIOLOGY AND CHEMISTRY 138:17-25; 10.1016/j.niox.2023.05.007 (2023) ------------- | 14.) | Denra, A et al. 2023 Essential Features of Gliding Arc Plasma for High-Performance Hydrocarbon Selective Catalytic Reduction of NO x at Low Temperatures; INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 62(25):9595-9606; 10.1021/acs.iecr.3c00584 (2023) ------------- | 15.) | Roy, NC et al. 2023 Mechanisms of reducing energy costs for nitrogen fixation using air-based atmospheric DBD plasmas over water in contact with the electrode; CHEMICAL ENGINEERING JOURNAL 461:141844; 10.1016/j.cej.2023.141844 (2023) ------------- | 16.) | Zhu, MY et al. 2023 Gliding arc discharge used for water activation: the production mechanism of aqueous NO and its role in sterilization; JOURNAL OF PHYSICS D-APPLIED PHYSICS 56(3):035202; 10.1088/1361-6463/aca340 (2023) ------------- | 17.) | Kumar, A et al. 2023 Degradation of diclofenac and 4-chlorobenzoic acid in aqueous solution by cold atmospheric plasma source; SCIENCE OF THE TOTAL ENVIRONMENT 864:161194; 10.1016/j.scitotenv.2022.161194 (2023) ------------- | 18.) | Ansari, M et al. 2023 A systematic review of non-thermal plasma (NTP) technologies for synthetic organic pollutants (SOPs) removal from water: Recent advances in energy yield aspects as their key limiting factor; JOURNAL OF WATER PROCESS ENGINEERING 51:103371; 10.1016/j.jwpe.2022.103371 (2023) ------------- | 19.) | Chiappim, W. et al. 2023 Effect of Gliding Arc Plasma Jet on the Mycobiota and Deoxynivalenol Levels in Naturally Contaminated Barley Grains; Int. J. Environ. Res. Public Health 20:5072; 10.3390/ijerph20065072 (2023) ------------- | 20.) | Abdelaziz, A.A., Teramoto, Y., Nozaki, T., Kim, H.-H., 2023. Performance of high-frequency spark discharge for efficient NOx production with tunable selectivity. Chemical Engineering Journal 470. https://doi.org/10.1016/j.cej.2023.144182 (2023) ------------- | 21.) | Al-Amin, M., Sah, A.K., Roy, N.C., Talukder, M.R., 2023. Enhancement of NOx production in water by combining an air bubble plasma jet and an external magnetic field. Physics of Plasmas 30. https://doi.org/10.1063/5.0161173 (2023) ------------- | 22.) | Hadinoto, K., Niemira, B.A., Trujillo, F.J., 2023. A review on plasma-activated water and its application in the meat industry. Comprehensive Reviews in Food Science and Food Safety 22, 4993–5019. https://doi.org/10.1111/1541-4337.13250 (2023) ------------- | 23.) | Hu, M., Duan, Z., Zhou, X., Du, G., Li, T., 2023. Effects of surface characteristics of wood on bonding performance of low-molar ratio urea–formaldehyde resin. Journal of Adhesion 99, 803–816. https://doi.org/10.1080/00218464.2022.2057225 (2023) ------------- | 24.) | Kim, J., Lee, H., Huh, S.-C., Bae, J.H., Choe, W., Han, D., Park, S., Ryu, S., Park, S., 2023. Competitive formation of NO, NO2, and O3 in an air-flowing plasma reactor: A central role of the flow rate. Chemical Engineering Journal 468. https://doi.org/10.1016/j.cej.2023.143636 (2023) ------------- | 25.) |
Matra, K., Aryuwong, W., Meetang, W., Ruthairat, S., Dechthummarong, C., Sangwang, W., Luang-In, V., 2023. Application of Electrical Breakdown in Liquid Process on Inulin Structural Transformations. IEEE Access 11, 114777–114789. https://doi.org/10.1109/ACCESS.2023.3321339 (2023) ------------- | 26.) | Miao, Y., Yokochi, A., Jovanovic, G., Zhang, S., von Jouanne, A., 2023. Application-oriented non-thermal plasma in chemical reaction engineering: A review. Green Energy and Resources 1. https://doi.org/10.1016/j.gerr.2023.100004 (2023) ------------- | 27.) | Miranda, F.S., Tavares, V.K.F., Gomes, M.P., Neto, N.F.A., Chiappim, W., Petraconi, G., Pessoa, R.S., Koga-Ito, C.Y., 2023. Physicochemical Characteristics and Antimicrobial Efficacy of Plasma-Activated Water Produced by an Air-Operated Coaxial Dielectric Barrier Discharge Plasma. Water (Switzerland) 15. https://doi.org/10.3390/w15234045 (2023) ------------- | 28.) | Sriraksha, M.S., Ayenampudi, S.B., Noor, M., Raghavendra, S.N., Chakka, A.K., 2023. Cold plasma technology: An insight on its disinfection efficiency of various food systems. Food Science and Technology International 29, 428–441. https://doi.org/10.1177/10820132221089169 (2023) ------------- | 29.) | Zhao, X., Tian, Y., 2023. Sustainable nitrogen fixation by plasma-liquid interactions. Cell Reports Physical Science 4. https://doi.org/10.1016/j.xcrp.2023.101618 (2023) ------------- | 30.) | V. Medvecká, S. Omasta, M. Klas, S. Mošovská, S. Kyzek, A. Zahoranova: Plasma activated water prepared by different plasma sources: physicochemical properties and decontamination effect on lentils sprouts, Plasma Sci. Technol. 24, 015503 (2022), citation no. X, WoS (2022) ------------- | 31.) | Z. Duan, M. Hu, S. Jiang, G. Du, X. Zhou, T. Li: Cocuring of Epoxidized Soybean Oil-Based Wood Adhesives and the Enhanced Bonding Performance by Plasma Treatment of Wood Surfaces, ACS Sustainable Chem. Eng. 10 (10), 3363-3372 (2022), citation no. X, INDEX (2022) ------------- | 32.) | Punith, N et al 2022 Generation of neutral pH high-strength plasma-activated water from a pin to water discharge and its bactericidal activity on multidrug-resistant pathogens, PLASMA PROCESSES AND POLYMERS, 10.1002/ppap.202200133 (2022) ------------- | 33.) | Ivanova, IP and Piskarev, IM 2022 Nitration Mechanism of Hot Plasma Pulsed Radiation for Electric Spark Discharge, IEEE TRANSACTIONS ON PLASMA SCIENCE, 10.1109/TPS.2022.3210031 (2022) ------------- | 34.) | Korolev, YD et al 2022 Initial stages of pulsed discharge in saline solutions in a vicinity of threshold voltages, PLASMA SOURCES SCIENCE & TECHNOLOGY 31:115013, 10.1088/1361-6595/ac9c90 (2022) ------------- | 35.) | Suzie, VA et al 2022 Photocatalytic performance of N-TiO2@SiO2 composite obtained under gliding arc plasma processing at atmospheric pressure, RESULTS IN ENGINEERING 15:100516, 10.1016/j.rineng.2022.100516 (2022) ------------- | 36.) | Szulc, M et al 2022 Influence of Pulse Amplitude and Frequency on Plasma Properties of a Pulsed Low-Current High-Voltage Discharge Operated at Atmospheric Pressure, APPLIED SCIENCES-BASEL 12:6580, 10.3390/app12136580 (2022) ------------- | 37.) | Landl, NV et al 2022 Production of nitrogen oxides in a positive column of a glow-type discharge in air flow, PLASMA CHEMISTRY AND PLASMA PROCESSING 42:1187-1200, 10.1007/s11090-022-10262-2 (2022) ------------- | 38.) | Makarov, AA and Piskarev, IM 2022 Effect of Gliding Electric Discharge on the Oxidizing Capacity of a Water Aerosol Jet, HIGH ENERGY CHEMISTRY 56:109-113, 10.1134/S0018143922020084 (2022) ------------- | 39.) | Sriraksha, MS et al 2022 Cold plasma technology: An insight on its disinfection efficiency of various food systems, FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL, 10.1177/10820132221089169 (2022) ------------- | 40.) | Hu, MY et al 2022 Effects of surface characteristics of wood on bonding performance of low-molar ratio urea-formaldehyde resin, JOURNAL OF ADHESION, 10.1080/00218464.2022.2057225 (2022) ------------- | 41.) | Kumar, A et al 2022 Direct and Indirect Treatment of Organic Dye (Acid Blue 25) Solutions by Using Cold Atmospheric Plasma Jet, FRONTIERS IN PHYSICS 10:835635, 10.3389/fphy.2022.835635 (2022) ------------- | 42.) | Ouzar, A and Kim, I 2022 Tetracycline degradation by nonthermal plasma: removal efficiency, degradation pathway, and toxicity evaluation, WATER SCIENCE AND TECHNOLOGY, 10.2166/wst.2022.339 (2022) ------------- | 43.) | Ruma, Hosano H., Sakugawa T., and Akiyama H. 2022 Effect of Gas Bubbling on the Physical and Chemical Activity of High Voltage Discharge Plasma in Water, International Conference on Advancement in Electrical and Electronic Engineering, ICAEEE 2022, DOI: 10.1109/ICAEEE54957.2022.9836373 (2022) ------------- | 44.) | A. Mai-Prochnow, D. Alam , R. Zhou, T. Zhang, K. (Ken) Ostrikov, P. J. Cullen: Microbial decontamination of chicken using atmospheric plasma bubbles, Plasma Process. Polym. 18 (1), 2000052 (2020), citation no. 19, INDEX (2021) ------------- | 45.) | Y.D. Korolev, I.A. Shemyakin, V.S. Kasyanov, V. G. Geyman, N. V. Landl, A. V. Bolotov: Transient processes during an initial stage of breakdown in saline solution, J. Appl. Phys. 129, 043304 (2021), citation no. 18, INDEX (2021) ------------- | 46.) | P. S. Ganesh Subramanian, J. Ananthanarasimhan, P. Leelesh, R. Harsha, A. M. Shivapuji, P.–L. Girard-Lauriault, R. Lakshminarayana: Plasma-activated water from DBD as a source of nitrogen for agriculture: Specific energy and stability studies editors-pick, J. Appl.Phys. 129, 093303 (2021), citation no.20, INDEX (2021) ------------- | 47.) | B. G. Salamov: Charge Transport Mechanisms in the Silver-Modified Zeolite Porous Microstructure, In: S. J. Ikhmayies, H. H. Kurt (Eds.): Advances in Optoelectronic Materials, Spinger (2021), citation no. X (2021) ------------- | 48.) | J. Thati, A. M. Adepu, A. H. Raza, D. Ankathi, V. Gongalla: Influence of Feeding Gases on the Composition of Plasma Activated Water, Adv. J. Grad. Res. 10 (1), 23-32 (2021), citation no. 17 (2021) ------------- | 49.) | I. M. Piskarev: Features of the Impact of Pulsed Radiation of Hot Plasma on Water and Aqueous Solutions, Plasma Chem. Plasma Process. X, xxx (2021), citation no. 20, INDEX (2021) ------------- | 50.) | A. Dickenson, J. L. Walsh, M. I. Hasan: Electromechanical coupling mechanisms at a plasma–liquid interface, J. Appl. Phys. 129, 213301 (2021), citation no. 14, WoS (2021) ------------- | 51.) | B. Onal-Ulusoy: Effects of Cold Atmospheric Gliding Arc Discharge Plasma, Non-thermal Ultrasound, and Low-Temperature Oven Treatments on Quality Parameters of Turkish Blossom Honey, Food Bioprocess Technol. X, xxx (2021), citation no. X, INDEX (2021) ------------- | 52.) | A. M. Diez-Pascual: Environmentally Friendly Synthesis of Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)/SnO2 Nanocomposites, Polymers 13, 2445 (2021), citation no. X, WoS (2021) ------------- | 53.) | K. Matra, Y. Tanakaran, V. Luang-In, S. Theepharaksapan: Enhancement of Lettuce Growth by PAW Spray Gliding Arc Plasma Generator, IEEE Trans. Plasma Sci. X, xxx (2021), citation no. 21, INDEX (2021) ------------- | 54.) | Nastasa, V et al 2021 Toxicity Assessment of Long-Term Exposure to Non-Thermal Plasma Activated Water in Mice, INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 22:11534, 10.3390/ijms222111534 (2021) ------------- | 55.) | Ananthanarasimhan, J et al 2021 Estimation of electron density and temperature in an argon rotating gliding arc using optical and electrical measurements, JOURNAL OF APPLIED PHYSICS 129:223301, 10.1063/5.0044014 (2021) ------------- | 56.) | Lundgaard, S et al 2021 Electrical Breakdown Spectroscopy of Nano-Micro-Thermites, TECHNOLOGIES 9:34, 10.3390/technologies9020034 (2021) ------------- | 57.) | H. D. Stryczewska: Supply Systems of Non-Thermal Plasma Reactors. Construction Review with Examples of Applications, Appl. Sci. 10, 3242 (2020), citation no. 52, WoS (2020) ------------- | 58.) | V. Gamaleev, T. Tsutsumi, M. Hiramatsu, M. Ito, M. Hori: Generation and Diagnostics of Ambient Air Glow Discharge in Centimeter-Order Gaps, IEEE Access 8, 72607-72619 (2020), citation no. 35, WoS (2020) ------------- | 59.) | V. Gamaleev, N. Iwata , G. Ito, M. Hori, M. Hiramatsu, M. Ito: Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications, Appl. Sci. 10, 801 (2020), citation no. 47, WoS (2020) ------------- | 60.) | V. Gamaleev, N. Iwata, M. Hiramatsu, M. Ito: Tuning of operational parameters for effective production of nitric oxide using ambient air rotating glow discharge jet, Jpn. J. Appl. Phys. 59, SHHF04 (2020), citation no. 33, WoS (2020) ------------- | 61.) | V. Gamaleev, N. Iwata, M. Hori, M. Hiramatsu, M. Ito: Direct Treatment of Liquids Using Low-Current Arc in Ambient Air for Biomedical Applications, Appl. Sci. 9 (17), 3505 (2019), citation no. 48, WoS (2020) ------------- | 62.) | H. I. A. Qazi, Y.-Y. Xin, L. Zhou, J. J. Huang: Description of the physicochemical properties of a gas–liquid phase discharge under the Ar—N2 environment, AIP Advances 10, 095207 (2020), citation no. 35, WoS (2020) ------------- | 63.) | V. Gamaleev, N. Britun, M. Hori: Control and Stabilization of Centimeter Scale Glow Discharge in Ambient Air Using Pulse-Width, IEEE Access 8, 201486- 201497 (2020), citation no. 35, INDEX (2020) ------------- | 64.) | N. C. Roy, C. Pattyn, A. Remy, N. Maira, F. Reniers: NOx synthesis by atmospheric‐pressure N2/O2 filamentary DBD plasma over water: Physicochemical mechanisms of plasma–liquid interactions, Plasma Process. Polym. X, e2000087 (2020), citation no. 28, WoS (2020) ------------- | 65.) | Lei, JP et al 2020 Experimental study on gliding discharge mode of rotating gliding arc discharge plasma, ACTA PHYSICA SINICA 69:195203, 10.7498/aps.69.20200672 (2020) ------------- | 66.) | C. Paradisi, E. Marotta, B. R. Locke: Papers by Selected Lecturers at the 11th International Symposium on Non-thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy (ISNTPT 11), Plasma Chem. Plasma Process. 39 (3) 519-522 (2019), citation 14, WoS, SCOPUS (2019) ------------- | 67.) | P. A. Mazurek: Analiza konfiguracji elektrod w odniesieniu do zaburzeń przewodzonych w reaktorze plazmowym, Przegląd Elektrotechniczny 95 (12) 176-179 (2019), citation no. 13, WoS (2019) ------------- | 68.) | Mazurek P.A. 2019 Analysis of the configuration of electrodes in relation to conducted disturbances in a plasma reactor [Analiza konfiguracji elektrod w odniesieniu do zaburzeń przewodzonych w reaktorze plazmowym], Przeglad Elektrotechniczny, 95 (12), pp. 176 - 179, DOI: 10.15199/48.2019.12.39 (2019) ------------- | |