Hľadaj:   

Oddelenie environmentálnej fyziky - Prihlásený: anka
Katedra astronómie, fyziky Zeme a meteorológie, FMFI UK, Bratislava,


Fluorescence measurement of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions

Tarabová B., Lukeš P., Hammer M.U., Jablonowski H., von Woedtke T., Reuter S., Machala Z.
Phys. Chem. Chem. Phys. 21(17), 8883-8896 (2019)

download  


Abstrakt:

A qualitative detection of peroxynitrite/peroxynitrous acid (ONOO-/ONOOH) as one of the key bactericidal agents produced in cold air plasma activated aqueous solutions is presented. We examined the use of the 2,7 dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent dye to detect ONOO-/ONOOH in plasma activated non-buffered water (PAW) or buffered solution (PAPB) generated by DC-driven self-pulsed transient spark discharge at atmospheric pressure in ambient air. The diagnostic selectivity of H2DCFDA to reactive oxygen and nitrogen species (RONS) typical for plasma activated aqueous solutions was examined by using various scavengers of RONS. This cross-reactivity study showed the highest sensitivity of the H2DCFDA dye to ONOO-/ONOOH. However, besides ONOO-/ONOOH, H2DCFDA also exhibited sensitivity to hypochlorite anions/hypochlorous acid (OCl-/HOCl), showing that for a selective study it is important to have an idea about the possible constituents in the studied solutions. The sensitivity of H2DCFDA to other RONS even in much higher concentrations was negligible. The presence of nitrites (NO2-) and hydrogen peroxide (H2O2) in PAW led predominantly to the production of peroxynitrous acid with a strong fluorescent response of H2DCFDA in PAW. Plasma treatment of buffered solutions led to the weak response of H2DCFDA. The fluorescence induced in PAW decreased after scavenging individual reactants, namely NO2- and H2O2, as well as by scavenging the product of the peroxynitrite forming reaction proving that the fluorescent response of H2DCFDA is primarily due to the formation of ONOO-/ONOOH. A chemical kinetic analysis of post-discharge processes and pseudo-second order reaction between H2O2 and NO2- confirms formation of peroxynitrous acid in PAW with the rate in the order of tens of nM per second. The post-discharge evolution of ONOOH formation rate was clearly correlated with their parallel detection by fluorescence spectroscopy using the H2DCFDA dye.


Citácie:

1.)S. Simon, B. Salgado, M.I. Hasan, M. Sivertsvik, E.N. Fernández, J.L. Walsh: Influence of Potable Water Origin on the Physicochemical and Antimicrobial Properties of Plasma Activated Water, PLASMA CHEM. PLASMA PROCESS. (2021), cit. no. 12
(2022)
-------------
2.)B. Caba, I. Gardikiotis, I. Topala, I. Mihaila, C.T. Mihai, C. Luca, S. Pasca, I.C. Caba, G. Dimitriu, B. Huzum, I.L. Serban: Cold Atmospheric Plasma, Platelet-Rich Plasma, and Nitric Oxide Synthesis Inhibitor: Effects Investigation on an Experimental Model on Rats; APPL. SCI. 12 (2) 590 (2022)
(2022)
-------------
3.)A. Berardinelli, A. Hamrouni, S. Dirè, R. Ceccato, G. Camera-Roda, L. Ragni, L. Palmisano, F. Parrino: Features and application of coupled cold plasma and photocatalysis processes for decontamination of water, CHEMOSPHERE 262, 128336 (2021), cit. Tarabova
(2021)
-------------
4.)A. Mai-Prochnow, R. Zhou, T. Zhang, K. (Ken) Ostrikov, S. Mugunthan, S. A. Rice, P. J. Cullen: Interactions of plasma-activated water with biofilms: inactivation, dispersal effects and mechanisms of action, BIOFILMS AND MICROBIOMS 7, 11 (2021), citation no. 68, WoS
(2021)
-------------
5.)T. Zimmermann, L.A. Gebhardt, L. Kreiss, Ch. Schneider, S. Arndt, S. Karrer, O. Friedrich, M.J.M. Fischer, A-K. Bosserhoff: Acidified Nitrite Contributes to the Antitumor Effect of Cold Atmospheric Plasma on Melanoma Cells, INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 22, 3757 (2021), cit. no. 30
(2021)
-------------
6.)E. Freund, L. Miebach, R. Clemen, M. Schmidt, A. Heidecke, T. von Woedtke, K-D. Weltmann, S. Kerstig, S. Bekeschus: Large volume spark discharge and plasma jet-technology for generating plasma-oxidized saline targeting colon cancer in vitro and in vivo, JOURNAL OF APPLIED PHYSICS 129, 053301 (2021), citation no. xxx
(2021)
-------------
7.)E. Sardella, V. Veronico, R. Gristina, L. Grossi, S. Cosmai, M. Striccoli, M. Buttiglione, F. Fracassi, P. Favia: Plasma Treated Water Solutions in Cancer Treatments: The Contrasting Role of RNS, Antioxidants 10, 605 (2021), citation no. 55, WoS
(2021)
-------------
8.)Guo D., Liu H., Zhou L., Xie J., He C.: Plasma‐activated water production and its application in agriculture, Journal of the Science of Food and Agriculture 101 (12) 4891-4899 (2021), WoS
(2021)
-------------
9.)Z. Wang, Y. Qi, L. Guo, L. Huang, Z. Yao, L. Yang, G. Li, J. Chen, J. Yan, G. Niyazi: The bactericidal effects of plasma-activated saline prepared by the combination of surface discharge plasma and plasma jet, J. Phys. D: Appl. Phys. 54, 385202 (2021), cit. XXX
(2021)
-------------
10.)V. Veronico, P. Favia, F. Fracassi, R. Gristina, E. Sardella: Validation of colorimetric assays for hydrogen peroxide, nitrate and nitrite ions in complex plasma-treated water solutions, Plasma Process. Polym. e2100062 (2021), citation no. 24
(2021)
-------------
11.)S. Meng, Y. Liu, L. Wang, X. Ji, Y. Chen, T. Zheng, J. Yu, H. Feng: Graphene-based flexible sensors for simultaneous detection of ascorbic acid, dopamine and uric acid, Front. Bioeng. Biotechnol. 9, 726071 (2021), cit. no. Tarabova
(2021)
-------------
12.)X. Hu, Y. Zhang, R. A. Wu, X. Liao, D. Liu, P. J. Cullen, R.-W. Zhou, T. Ding: Diagnostic analysis of reactive species in plasma-activated water (PAW): current advances and outlooks, J. Phys. D: Appl. Phys. 55(2), 023002 (2021), cit.no. 97
(2021)
-------------
13.)Nastasa V.; Pasca A.-S.; Malancus R-N.; et al.: Toxicity Assessment of Long-Term Exposure to Non-Thermal Plasma Activated Water in Mice; INT. J. MOLEC. SCI. 22 (21) 11534 (2021), citation no. 6, WoS
(2021)
-------------
14.)C. Breen, R. Pal, M.R.J. Elsegood, S.J. Teat, F. Iza, K. Wende, B.R. Buckley, S.J. Butler: Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe, CHEMICAL SCIENCE 11 (12) 3164-3170 (2020), citation no. 47, WoS
(2020)
-------------
15.)Ma MY., Zhang, YZ., Lv, Y., Sun FS.: The key reactive species in the bactericidal process of plasma activated water, JOURNAL OF PHYSICS D: APPLIED PHYSICS 53(18), 185207 (2020), cit. 42, WoS
(2020)
-------------
16.)E. Sardella, M. G. Mola, R. Gristina, M. Piccione, V. Veronico, M. De Bellis, A. Cibelli, M. Buttiglione, V. Armenise, P. Favia, G. P. Nicchia: A Synergistic Effect of Reactive Oxygen and Reactive Nitrogen Species in Plasma Activated Liquid Media Triggers Astrocyte Wound Healing, International Journal of Molecular Sciences 21(9), 3343 (2020), cit. 34, WoS
(2020)
-------------
17.)R. Zhou, R. Zhou, P. Wang, Y. Xian, A. Mai-Prochnow,X. Lu, P. J. Cullen, K. Ostrikov, K. Bazaka: Plasma-activated water: generation, origin of reactive species and biological applications, JOURNAL OF PHYSICS D: APPLIED PHYSICS 53, 303001 (2020), cit. 51
(2020)
-------------
18.)Abalenikhina YV; Kosmachevskaya OV; Topunov AF: Peroxynitrite: Toxic Agent and Signaling Molecule (Review); Appl. Biochem. Microbiol. 56(6), 611-623 (2020), WoS
(2020)
-------------
19.)K. Liu, S-T. Liu, C-F. Ran: The Effect of Air-Water-Plasma-Jet-Activated Water on Penicillium: The Reaction of HNO(2)and H(2)O(2)Under Acidic Condition, FRONTIERS IN PHYSICS 8, 242 (2020), cit. 32, WoS
(2020)
-------------
20.)Y-M. Zhao, A. Patange, D-W. Sun, B. Tiwari: Plasma-activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry, Compr. Rev. Food. Sci. Food Safety 19(6), 3951-3979 (2020), WoS
(2020)
-------------
21.)S. W. Ng, E. Tsoukou, S. Chaple, D. Boehm, P. Bourke: Plasma treatment of liquids, In: Innovative Food Processing Technologies: A Comprehensive Review, vol. 1, Ed: K. Muthukumarappan, K. Knoerzer, chapter 1.35, ISBN: 9780128157817 (2020), cit. Tarabova
(2020)
-------------
22.)T. von Woedtke, S. Emmert, H-R. Metelmann, S. Rupf, K-D.Weltmann: Perspectives on cold atmospheric plasma (CAP) applications in medicine, PHYSICS OF PLASMAS 27, 070601 (2020), cit. Tarabova
(2020)
-------------


DOMOV
ČLENOVIA
VÝSKUM
PUBLIKÁCIE
ŠTUDENTI
LINKY
KONTAKT




Prihlásený(á): anka

Odhlásenie