Search:  

Division of Environmental Physics - User: student
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava


Cold Atmospheric Plasma and Plasma-Activated Medium Trigger RONS-Based Tumor Cell Apoptosis

Bauer G., Sersenová D., Graves D.B. and Machala Z.
Sci. Rep. 9, 14210 (2019)

download  


Abstract:

The selective in vitro anti-tumor mechanisms of cold atmospheric plasma (CAP) and plasma-activated media (PAM) follow a sequential multi-step process. The first step involves the formation of primary singlet oxygen (1O2) through the complex interaction between NO2─ and H2O2. 1O2 then inactivates some membrane-associated catalase molecules on at least a few tumor cells. With some molecules of their protective catalase inactivated, these tumor cells allow locally surviving cell-derived, extracellular H2O2 and ONOO─ to form secondary 1O2. These species continue to inactivate catalase on the originally triggered cells and on adjacent cells. At the site of inactivated catalase, cell-generated H2O2 enters the cell via aquaporins, depletes glutathione and thus abrogates the cell`s protection towards lipid peroxidation. Optimal inactivation of catalase then allows efficient apoptosis induction through the HOCl signaling pathway that is finalized by lipid peroxidation. An identical CAP exposure did not result in apoptosis for nonmalignant cells. A key conclusion from these experiments is that tumor cell-generated RONS play the major role in inactivating protective catalase, depleting glutathione and establishing apoptosis-inducing RONS signaling. CAP or PAM exposure only trigger this response by initially inactivating a small percentage of protective membrane associated catalase molecules on tumor cells.


Citations:

1.)Pang B.; Liu Z.; Zhang H. et al.: Investigation of the chemical characteristics and anticancer effect of plasma-activated water: The effect of liquid temperature, PLASMA PROCESS. POLYM. 19 (1) e2100079 (2022) WoS
(2022)
-------------
2.)Nasri Z; Bruno G; Bekeschus S; Weltmann KD ; von Woedtke T; Wende K: Development of an electrochemical sensor for in-situ monitoring of reactive species produced by cold physical plasma; SENSORS AND ACTUATORS B-CHEMICAL 326, 129007 (2021)
(2021)
-------------
3.)Nejat F.; Jadidi K.; Aghamollaei H. et al.: The assessment of the concentration of candidate cytokines in response to conjunctival-exposure of atmospheric low-temperature plasma in an animal model, BMC OPHTHALMOLOGY 21 (1) 417 (2021) WoS
(2021)
-------------
4.)Brany D.; Dvorska D.; Strnadel J. et al.: Effect of Cold Atmospheric Plasma on Epigenetic Changes, DNA Damage, and Possibilities for Its Use in Synergistic Cancer Therapy, INT. J. MOLECULAR SCI. 22 (22) 12252 (2021) WoS
(2021)
-------------
5.)Sremacki I.; Kos S.; Bosnjak M. et al. Plasma Damage Control: From Biomolecules to Cells and Skin; ACS APPL. MATERIALS & INTERFACES 13 (39) 46303-46316 (2021) WoS
(2021)
-------------
6.)Sardella E.; Mola M.G.; Gristina R. et al.: A Synergistic Effect of Reactive Oxygen and Reactive Nitrogen Species in Plasma Activated Liquid Media Triggers Astrocyte Wound Healing; INTER. J. MOLECULAR SCIENCES 21 (9) 3343, WoS
(2020)
-------------
7.)Braný D.; Dvorská D.; Halašová E.; Škovierová H.: Cold atmospheric plasma: A powerful tool for modern medicine. International J. Molecular Sciences 21 (8) 2932 (2020); SCOPUS
(2020)
-------------
8.)Narayanan D.; Ma S.; Ozcelik D.: Targeting the Redox Landscape in Cancer Therapy; CANCERS 12(7) 1706 (2020)
(2020)
-------------
9.)Attri P; Park JH; De Backer J; Kim M; Yun JH; Dewilde S; Shiratani M ; Choi, EH; Lee W; Bogaerts A: Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study; INT. J. BIOLOGICAL MACROMOLECULES 163, 2405-2414 (2020)
(2020)
-------------
10.)Kawasaki T; Koga K; Shiratani M: Experimental identification of the reactive oxygen species transported into a liquid by plasma irradiation; Jpn. J. Appl. Phys. 59(11) 110502 (2020) WoS
(2020)
-------------
11.)Frescaline N; Duchesne C; Favier M; Onifarasoaniaina R; Guilbert T; Uzan G; Banzet S; Rousseau A; Lataillade JJ: Physical plasma therapy accelerates wound re-epithelialisation and enhances extracellular matrix formation in cutaneous skin grafts; J. Pathol. 252(4), 451-464 (2020) WoS
(2020)
-------------
12.)Haralambiev L; Neuffer O; Nitsch A; Kross NC; Bekeschus S; Hinz P; Mustea A; Ekkernkamp A; Gumbel D; Stope MB: Inhibition of Angiogenesis by Treatment with Cold Atmospheric Plasma as a Promising Therapeutic Approach in Oncology; Int. J. Mol. Sci. 21(19), 7098 (2020) WoS
(2020)
-------------
13.)Omran AV; Busco G; Ridou L; Dozias S; Grillon C; Pouvesle JM; Robert E: Cold atmospheric single plasma jet for RONS delivery on large biological surfaces; Plasma Sources Sci. Technol. 29(10), 105002 (2020) WoS
(2020)
-------------
14.)Moreira JD; Schwartz L; Jolicoeur M: Targeting Mitochondrial Singlet Oxygen Dynamics Offers New Perspectives for Effective Metabolic Therapies of Cancer; Front. Oncol. 10, 573399 (2020) WoS
(2020)
-------------
15.)Bengtson C; Bogaerts A: On the Anti-Cancer Effect of Cold Atmospheric Plasma and the Possible Role of Catalase-Dependent Apoptotic Pathways; Cells 9(10) 2330 (2020) WoS
(2020)
-------------
16.)Dai XF; Bazaka K; Thompson EW; Ostrikov K; Cold Atmospheric Plasma: A Promising Controller of Cancer Cell States; Cancers 12(11) 3360 (2020) WoS
(2020)
-------------
17.)Privat-Maldonado A., Bengtson C., Razzokov J., Smits E., Bogaerts A.: Modifying the tumour microenvironment: Challenges and future perspectives for anticancer plasma treatments. Cancers 11 (12) (2019) 1920, SCI; SCOPUS
(2019)
-------------


HOME
NEWS
STAFF
RESEARCH
PUBLICATIONS
STUDENTS
LINKS
CONTACT

Post-doctoral positions



 

User: student

Logout