Hľadaj:   

Oddelenie environmentálnej fyziky - Prihlásený: veronika
Katedra astronómie, fyziky Zeme a meteorológie, FMFI UK, Bratislava,


Transport of Gaseous Hydrogen Peroxide and Ozone into Bulk Water vs. Electrosprayed Aerosol

Hassan M. E., Janda M., Machala Z.
Water 13 (2), 182 (2021)

download  


Abstrakt:

Production and transport of reactive species through plasma–liquid interactions play a significant role in multiple applications in biomedicine, environment, and agriculture. Experimental investigations of the transport mechanisms of typical air plasma species: hydrogen peroxide (H2O2) and ozone (O3) into water are presented. Solvation of gaseous H2O2 and O3 from an airflow into water bulk vs. electrosprayed microdroplets was measured, while changing the water flow rate and applied voltage, during different treatment times and gas flow rates. The solvation rate of H2O2 and O3 increased with the treatment time and the gas–liquid interface area. The total surface area of the electrosprayed microdroplets was larger than that of the bulk, but their lifetime was much shorter. We estimated that only microdroplets with diameters below ~40 m could achieve the saturation by O3 during their lifetime, while the saturation by H2O2 was unreachable due to its depletion from air. In addition to the short-lived flying microdroplets, the longer-lived bottom microdroplets substantially contributed to H2O2 and O3 solvation in water electrospray. This study contributes to a better understanding of the gaseous H2O2 and O3 transport into water and will lead to design optimization of the water spray and plasma-liquid interaction systems.


Citácie:

1.)Xu, H., Wei, Z., Quan, L., Hu, Y., Qiao, M., Shao, M., Xie, K., 2025. Controlled plasma-droplet interactions: Two-phase flow millifluidic system. Physics of Plasmas 32. https://doi.org/10.1063/5.0238303
(2025)
-------------
2.)Pajtášová, M., Ďurišová, S., Ondrušová, D., Stupavská, M., Janík, R., Mičicová, Z., Papučová, I., Feriancová, A., Lokšíková, S., 2025. Evaluation of atmospheric pressure plasma surface modification of un-vulcanized NR/SBR blend. Vacuum 233. https://doi.org/10.1016/j.vacuum.2024.113953
(2025)
-------------
3.)Guduru, A.T., Singh, A., Mansuri, A., Khuntia, S., Kumar, A., Dalvi, S., 2025. Magnetic nanoparticle loaded ozone microbubbles for effective degradation of organic pollutants from sewage water. Journal of Water Process Engineering 71. https://doi.org/10.1016/j.jwpe.2025.107283
(2025)
-------------
4.)Moonsub, K., Seesuriyachan, P., Boonyawan, D., Rachtanapun, P., Sawangrat, C., Opassuwan, T., Wattanutchariya, W., 2024. Combating foodborne pathogens: Efficacy of plasma-activated water with supplementary methods for Staphylococcus aureus eradication on chicken, and beef. Food Chemistry: X 24, 101890. https://doi.org/10.1016/j.fochx.2024.101890
(2024)
-------------
5.)Kumar Mishra, A., Sen Gupta, G., Abha Singh, A., Bhushan Agrawal, S., Tiwari, S., 2024. Can fertilization OF CO2 heal the ozone-injured agroecosystems? Atmospheric Pollution Research 15, 102046. https://doi.org/10.1016/j.apr.2024.102046
(2024)
-------------
6.)Moonsub, K., Seesuriyachan, P., Boonyawan, D., Wattanutchariya, W., 2024. Synergistic Effect of Plasma-Activated Water with Micro/Nanobubbles, Ultraviolet Photolysis, and Ultrasonication on Enhanced Escherichia coli Inactivation in Chicken Meat. Processes 12, 567. https://doi.org/10.3390/pr12030567
(2024)
-------------
7.)Gorbanev, Y., Nikiforov, A., Fedirchyk, I., Bogaerts, A., 2024. Organic reactions in plasma–liquid systems for environmental applications. Plasma Processes & Polymers e2400149. https://doi.org/10.1002/ppap.202400149
(2024)
-------------
8.)Kaur, K., Kumar, S., Kaur, P., Saini, M.K., Singh, A., Bala, M., Singh, D., 2024. Optimization of Process Parameters for Ozone Disinfestation of C. Maculatus : Effects on Germination, in Vitro Protein Digestibility, Nutritional, Thermal and Pasting Properties of Mung Bean Grains. Ozone: Science & Engineering 46, 128–143. https://doi.org/10.1080/01919512.2023.2210615
(2024)
-------------
9.)Beckers, J., Berndt, J., Block, D., Bonitz, M., Bruggeman, P.J., Couëdel, L., Delzanno, G.L., Feng, Y., Gopalakrishnan, R., Greiner, F., Hartmann, P., Horányi, M., Kersten, H., Knapek, C.A., Konopka, U., Kortshagen, U., Kostadinova, E.G., Kovačević, E., Krasheninnikov, S.I., Mann, I., Mariotti, D., Matthews, L.S., Melzer, A., Mikikian, M., Nosenko, V., Pustylnik, M.Y., Ratynskaia, S., Sankaran, R.M., Schneider, V., Thimsen, E.J., Thomas, E., Thomas, H.M., Tolias, P., Van De Kerkhof, M., 2023. Physics and applications of dusty plasmas: The Perspectives 2023. Physics of Plasmas 30, 120601. https://doi.org/10.1063/5.0168088
(2024)
-------------
10.)Meyer, M; Nayak, G; Bruggeman, PJ; Kushner, MJ 2023 HCOO- (aq) degradation in droplets by OHaq in an atmospheric pressure glow discharge, JOURNAL OF PHYSICS D-APPLIED PHYSICS 56(28):285202; doi:10.1088/1361-6463/acc958
(2023)
-------------
11.)Kaur, K et al 2023 Optimization of Process Parameters for Ozone Disinfestation of C.Maculatus: Effects on Germination, in Vitro Protein Digestibility, Nutritional, Thermal and Pasting Properties of Mung Bean Grains, OZONE-SCIENCE & ENGINEERING, doi:10.1080/01919512.2023.2210615
(2023)
-------------
12.)Benjamin, SE; LaVerne, JA; Sigmon, GE; Burns, PC 2023 Ozone-Facilitated Formation of Uranyl Peroxide in Humid Conditions, INORGANIC CHEMISTRY 61(51):20977-20985; doi:10.1021/acs.inorgchem.2c03454
(2023)
-------------
13.)Natale, FD et al. 2023 A model for the absorption rate in electrically charged droplets; CHEMICAL ENGINEERING SCIENCE 280:118964; 10.1016/j.ces.2023.118964
(2023)
-------------
14.)V. Medvecká, S. Omasta, M. Klas, S. Mošovská, S. Kyzek, A. Zahoranova: Plasma activated water prepared by different plasma sources: physicochemical properties and decontamination effect on lentils sprouts, Plasma Sci. Technol. 24, 015503 (2022), citation no. X, WoS
(2022)
-------------
15.)Gallo Jr., A.; Musskopf, N.H.; Liu, X.; Yang, Z.; Petry, J.; Zhang, P.; Thoroddsen, S.T.; Im, H.G.; Mishra, H. On the formation of hydrogen peroxide in water microdroplets. Chem. Sci. 2022. 10.1039/D1SC06465G.
(2022)
-------------
16.)von Woedtke, T.; Laroussi, M.; Gherardi, M. Foundations of plasmas for medical applications. Plasma Sources Science and Technology 2022, 31, 054002.
(2022)
-------------
17.)Meyer, M.; Nayak, G.; Bruggeman, P.J.; Kushner, M.J. Sheath formation around a dielectric droplet in a He atmospheric pressure plasma. Journal of Applied Physics, 132, 083303.
(2022)
-------------
18.)Tial MKS, and Mitsugi F 2022 Characteristics of Water-Cooling Dielectric Barrier Discharge Spraying Nozzle IEEE TRANSACTIONS ON PLASMA SCIENCE 10.1109/TPS.2022.3195814
(2022)
-------------
19.)Gao, H.; Wang, G.; Chen, B.; Zhang, Y.; Liu, D.; Lu, X.; He, G.; Ostrikov, K. Atmospheric-pressure non-equilibrium plasmas for effective abatement of pathogenic biological aerosols. Plasma Sources Science and Technology 2021, 30, 053001
(2021)
-------------
20.)Nayak, G.; Oinuma, G.; Yue, Y.; Santos Sousa, J.; Bruggeman, P.J. Plasma-droplet interaction study to assess transport limitations and the role of ⋅OH, O⋅,H⋅,O2(a 1Δg),O3, He(23 S) and Ar(1s 5) in formate decomposition. Plasma Sources Science and Technology 2021, 30, 115003
(2021)
-------------


DOMOV
ČLENOVIA
VÝSKUM
PUBLIKÁCIE
ŠTUDENTI
LINKY
KONTAKT




Prihlásený(á): veronika

Odhlásenie