Citations: 1.) | Rooij, O.V., Ahlborn, O., Sobota, A., 2024. Electron density in a non-thermal atmospheric discharge in contact with water and the effect of water temperature on plasma-water interactions. J. Phys. D: Appl. Phys. 57, 385206. https://doi.org/10.1088/1361-6463/ad59b0 (2024) ------------- | 2.) | Van Rooij, O., Wubs, J., Höft, H., Sobota, A., 2024. DBD-like and electrolytic regimes in pulsed and AC driven discharges in contact with water. J. Phys. D: Appl. Phys. 57, 115201. https://doi.org/10.1088/1361-6463/ad1221 (2024) ------------- | 3.) | Berlatto, É., Khalaf, P., 2024. Exploring Energy-Efficient Techniques and Chemical Kinetics in Reactive Nitrogen Species Production with Ambient Air Plasma for Plasma-Activated Water. J. Braz. Chem. Soc. https://doi.org/10.21577/0103-5053.20240009 (2024) ------------- | 4.) | Santamaría, B., Ferreyra, M.G., Chamorro, J.C., Cejas, E., Fina, B.L., Prevosto, L., 2024. Physicochemical Properties and Time Stability of Plasma Activated Water by a Liquid-Cathode Glow-Type Discharge in Air: The Effect of Air Confinement. IEEE Trans. Plasma Sci. 52, 1923–1929. https://doi.org/10.1109/TPS.2023.3281080 (2024) ------------- | 5.) | Beckers, J., Berndt, J., Block, D., Bonitz, M., Bruggeman, P.J., Couëdel, L., Delzanno, G.L., Feng, Y., Gopalakrishnan, R., Greiner, F., Hartmann, P., Horányi, M., Kersten, H., Knapek, C.A., Konopka, U., Kortshagen, U., Kostadinova, E.G., Kovačević, E., Krasheninnikov, S.I., Mann, I., Mariotti, D., Matthews, L.S., Melzer, A., Mikikian, M., Nosenko, V., Pustylnik, M.Y., Ratynskaia, S., Sankaran, R.M., Schneider, V., Thimsen, E.J., Thomas, E., Thomas, H.M., Tolias, P., Van De Kerkhof, M., 2023. Physics and applications of dusty plasmas: The Perspectives 2023. Physics of Plasmas 30, 120601. https://doi.org/10.1063/5.0168088 (2024) ------------- | 6.) | Matejka, F; Galar, P; Khun, J; Scholtz, V; Kusova, K 2023 Mechanisms leading to plasma activated water high in nitrogen oxides PHYSICA SCRIPTA 98(4):045619; doi:10.1088/1402-4896/acc48e (2023) ------------- | 7.) | Vervloessem, E et al 2023 NH3 and HNOX Formation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma, ACS SUSTAINABLE CHEMISTRY & ENGINEERING 11(10):4289-4298; doi:10.1021/acssuschemeng.3c00208 (2023) ------------- | 8.) | Abdelaziz, AA; Teramoto, Y; Nozaki, T; Kim, HH 2023 Toward Reducing the Energy Cost of NOx Formation in a Spark Discharge Reactor through Pinpointing Its Mechanism, ACS SUSTAINABLE CHEMISTRY & ENGINEERING 11(10):4106-4118; doi:10.1021/acssuschemeng.2c06535 (2023) ------------- | 9.) | Santamaria, B et al. 2023 Physicochemical Properties and Time Stability of Plasma Activated Water by a Liquid-Cathode Glow-Type Discharge in Air: The Effect of Air Confinement; IEEE TRANSACTIONS ON PLASMA SCIENCE; 10.1109/TPS.2023.3281080 (2023) ------------- | 10.) | Abdelaziz, A.A., Teramoto, Y., Nozaki, T., Kim, H.-H. 2023 Performance of high-frequency spark discharge for efficient NOx production with tunable selectivity; Chemical Engineering Journal 470:144182; 10.1016/j.cej.2023.144182 (2023) ------------- | 11.) | Zhou, R., Zhang, T., Zhou, R. (2023). Pulsed Discharges for Water Activation and Plasma-Activated Water Production. In: Shao, T., Zhang, C. (eds) Pulsed Discharge Plasmas. Springer Series in Plasma Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-1141-7_11 (2023) ------------- | 12.) | S. Zhang, L. Zong, X. Zeng, R. Zhou, Y. Liu, C. Zhang, J. Pan, P. J. Cullen, K. Ostrikov, T. Shao: Sustainable nitrogen fixation with nanosecond pulsed spark discharges: insights into free-radical-chain reactions, Green Chemistry X, xxx (2022), citation no. X, WoS/SCOPUS (2022) ------------- | 13.) | Miebach L, Freund E, Cecchini AL, and Bekeschus S 2022 Conductive Gas Plasma Treatment Augments Tumor Toxicity of Ringer\'s Lactate Solutions in a Model of Peritoneal Carcinomatosis, ANTIOXIDANTS 11, 2076-3921, 10.3390/antiox11081439 (2022) ------------- | 14.) | Wang, Z.; Liu, L.; Liu, D.; Zhu, M.; Chen, J.; Zhang, J.; Zhang, F.; Jiang, J.; Guo, L.; Wang, X.; Rong, M. Combination of NO x mode and O3 mode air discharges for water activation to produce a potent disinfectant. Plasma Sources Science and Technology 2022, 31, 05LT01. (2022) ------------- | 15.) | Allabakshi, S.M.; Srikar, P.; Gangwar, R.K.; Maliyekkal, S.M. Feasibility of surface dielectric barrier discharge in wastewater treatment: Spectroscopic modeling, diagnostic, and dye mineralization. Separation and Purification Technology 2022, 296, 121344. (2022) ------------- | 16.) | Nastuta, A.V. Frontiers in Atmospheric Pressure Plasma Technology. Applied Sciences 2022, 12, 6369. (2022) ------------- | 17.) | Talviste, R.; Jõgi, I.; Raud, S.; Noori, H.; Raud, J. Nitrite and Nitrate Production by NO and NO2 Dissolution in Water Utilizing Plasma Jet Resembling Gas Flow Pattern. Plasma Chemistry and Plasma Processing 2022. (2022) ------------- | 18.) | Punith, N et al., Generation of neutral pH high-strength plasma-activated water from a pin to water discharge and its bactericidal activity on multidrug-resistant pathogens, PLASMA PROCESSES AND POLYMERS,10.1002/ppap.202200133, 2022 (2022) ------------- | 19.) | Hsieh, CH et al. 2022 Effects of Reactive Species Produced by Electrolysis of Water Mist and Air through Non-Thermal Plasma on the Performance and Exhaust Gas of Gasoline Engines, MOLECULES 27(20):7072, 10.3390/molecules27207072 (2022) ------------- | 20.) | K. Hadinoto, J. B. Astorgaa, H. Masood, R. Zhou, D. Alam, P. J.Cullen, S. Prescott, F. J.Trujillo: Efficacy optimization of plasma-activated water for food sanitization through two reactor design configurations, Innov. Food Sci. Emerg. Technol. 74, 102867 (2021), citation Janda, INDEX (2021) ------------- | |