

Activation and bio-decontamination of water by cold atmospheric plasma, towards green fertilizer with lower environmental impact

Mário Janda¹, Pankaj Pareek¹, Bernard Gitura Kimani¹, Zlatka Kelar-Tučeková¹, Zdenko Machala¹

¹*Division of Environmental Physics, Comenius University in Bratislava, Slovakia*

The reactive chemical species generated by cold atmospheric plasma of electrical discharges can be trapped in liquids, particularly water, to produce a chemically rich solution called plasma-activated water (PAW) [1]. PAW has demonstrated strong antimicrobial properties and has been extensively studied for its wide range of applications in food preservation, agriculture, and biomedicine and has a great potential for wastewater treatment, especially to inactivate toxic microorganisms [2]. So far the studies applying plasma discharges and PAW against cyanobacteria are rare [3].

By combining two distinct plasma sources - a transient spark, generating nitrogen oxides and nitrous/nitric acids, and an ozone generator based on dielectric barrier discharge - we were able to generate two distinct types of PAW. The first type, rich in NO_2^- (nitrite ions), exhibits strong antimicrobial properties and is suitable for the bio-decontamination of water. The biocidal effects of this PAW, generated by the transient spark, were verified on several microorganisms [4, 5]. Further research, including tests on cyanobacteria, is planned to assess its efficacy against a wider range of microbial contaminants. The second type of PAW, rich in NO_3^- (nitrate ions), shows promise as an alternative fertilizer for plants, presumably with a lower potential for causing harmful cyanobacteria blooms compared to traditional nitrogen-based fertilizers.

Keywords: nitrogen fixation, green agriculture, water bio-decontamination, cold plasma

References

1. Zhou R., Zhou R., Wang P., Xian Y., Mai-Prochnow A., Lu X., Cullen P., Ostrikov K., Bazaka K., *J. Phys. Appl. Phys.* **2020**, 53, 303001. <https://doi.org/10.1088/1361-6463/ab81cf>
2. Jangra R., Ahlawat K., Dixit A., Prakash R., *Sci. Rep.* **2023**, 13, 10295. <https://doi.org/10.1038/s41598-023-37014-2>
3. Marsalek B. et al, *Water* **2020**, 12, 8. <https://doi.org/10.3390/w12010008>
4. Machala Z., Tarabová B., Sersenová D., Janda M., Hensel K., *J. Phys. Appl. Phys.* **2018**, 52, 034002. <https://doi.org/10.1088/1361-6463/aae807>.
5. Lavrikova A., Dadi N. C. T., Bujdáková H., Hensel K., *Plasma Process. Polym.* **2024**, 21, e2300147. <https://doi.org/10.1002/ppap.202300147>

Acknowledgements and Funding

Funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V03-00033 EnvAdwice