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MASS SPECTROMETRY OF DIELECTRIC BARIER DISCHARGE WITH
WATER ELECTRODE

Neda Babucié?, Nenad Selakovi¢?, Oleksandr Galmiz?, Mario Janda?, Olivera
Jovanovi¢', Nevena Puad?, Nikola Skoro*

1nstitute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
2Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius
University in Bratislava, Mlynska dolina, 842 48 Bratislava, Slovakia
E-mail: nedab@ipb.ac.rs

This paper presents the results of an investigation into the generation of reactive species in two setups of a
dielectric barrier discharge (DBD) plasma source, using a water target with different vessels. By analyzing both
neutral mass spectra and MID-scan spectra, we explore the concentrations of reactive oxygen and nitrogen
species (NO, NOz and Os) under varying plasma conditions and mass spectrometer configurations.

1. Introduction
In the past decade, a lot of interest has been drawn to atmospheric pressure plasmas (APPs) because
of their unique properties and wide range of applications in fields such as material processing,
agriculture, foodindustry and biomedicine[1, 2, 3, 4]. Since they do not require costly vacuumsystems
and operate atatmospheric pressure, APPs have the advantage of being accessible andversatile. Lately,
atmospheric pressure plasma in contact with water has attracted significant interest due to its
potential to generate reactive species and drive advanced chemical processes for various applications.

The behaviour and chemistry of APPs are greatly affected when they come into contact with water,
either as an electrode or as a target. Reactive oxygen, nitrogen and hydrogen species are found in
water and are essential for a variety of processes, such as biomedical treatments, sterilization, and
water purification. Water forms a dynamic interface where plasma-induced reactions take place,
producing reactive species like ozone (Os), hydrogen peroxide (H,0,), hydroxyl radicals (OH), nitrates
(NO3), nitrites (NOy) etc. These species playan essential role in enhancing the efficacy of plasma-based
processes [5].

Also, higher humidity introduced in feeding gas of APPs has been demonstrated to increase the
generation of reactive species, such as OH radicals, which are necessary for surface modification and
decontamination [6]. The interaction, however, is complex and depends upon a number of variables,
including ambient circumstances, water composition, and plasma characteristics. To optimize plasma
processes and customize them for particular applications, it is essential to comprehend these
interactions.

Dielectric barrier discharges (DBDs) are widely used for surface activation in atmospheric-pressure
plasma applications. However, treating sensitive materials like polymers can be challenging because
high-density plasma may cause damage, such as pin-holing. This issue often occurs in volume barrier
discharges or coronas, where the plasma moves perpendicular to the treated surface. A practical
solutionis to generate plasma that travels parallel to the surface. This approach minimizes the risk of
damage while maintaining effective treatment. One promising method is the surface dielectric barrier
discharge (SDBD), where the plasma spreads along the surface of a dielectric plate. This setup not only
protects the material but also improves the efficiency of the process.

In our earlier work [7, 8, 9] we introduced a novel plasma discharge reactor for efficiently activating
polymers at the gas/liquid interface. This design uses liquid electrodes to ignite the SDBD directly from
the liquid surface. Although the plasma-water interaction is limited to the edge of the dielectric tube,
the system is both scalable and flexible, making it suitable for a wide range of applications.
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Mass spectrometryis ananalytical technique that measures the mass-to-charge ratio of ions to identify
and quantify molecules in a sample. Primary advantage of atmospheric pressure mass spectrometry
lies in its ability to rapidly and accurately analyse a wide range of chemical species [10]. These
instruments are equipped with specialized pumping systems that create a pressure gradient, enabling
the effective intake of gases from atmospheric plasmas. For neutral species, the mass spectrometer
incorporates an ionization chamber that converts neutrals into ions, enabling their detection and
analysis. The mass analyser which filters and detects neutral species or positive and negative ions,
generating detailed mass spectraforall components. The technique provides real-time measurements
of reactive species, ions, and neutral molecules, which are essential for understanding plasma
processes and optimizing plasma-based applications.

When it comes to plasma in contact with water, due to technical challenges, mass spectrometric
analysis of the plasma has so far been conducted by introducing water vapour into the working gas
[11]. In this paper, we tackled the technical challenge and developed a setup where the mass
spectrometer inlet was positioned in close proximity to the plasma-water interface, allowing us to
successfully record mass spectra.

Inthis paper, we will present the results of our investigationinto the reactive species generated by the
dielectric barrier discharge (DBD) setup, but with two different water vessel configurations. The
analysis includes both neutral mass spectra and MID-scan spectra, offering insights into the
concentrations of key reactive oxygen and nitrogen species, such as NO, NO,, CO, and O3, as well as
the detailed composition of the plasma obtained under these conditions.

2. Experimental set up

The schematic of the DBD at atmospheric pressure and HIDEN HPR60 mass-energy spectrometer is
given in Figure 1. The DBD device is in the triple-phase interface (plasma-liquid-solid) plasma system
consisting of a thin glass test tube with a 10 mm diameter and a 0.5 mm wall thickness was used. The
liquid inside the test tube served as the high-voltage electrode and was connected to a power supply
generating a sinusoidal voltage waveform. The Petri dish bath, which grounded the system, completed
the circuit. Tapwaterwith an electrical conductivity of approximately 0.3 mS/cmwasused as the liquid
electrode. The waterwas electricallyinsulated bothinside and outside the test tube to ensure stability.
The discharge operated in ambient air at atmospheric pressure. The high-voltage sine waveform had
an amplitude range of 0 to 20 kV and could be adjusted to frequencies between 23 and 30 kHz. Power
was delivered to the liquid electrodes through a high-voltage resonance generator (Lifetech-300W)
paired with a function generator (FY3200S-24M).
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Fig. 1. DBD device in two configurations (DBD1 and DBD2) with a schematic representation of mass
spectrometry measurements. In DBD1 setting, the device wasimmersed in 10ml of tap water placed
in a Petri dish (¢55mm). In DBD2 setting, the device was placed in a glass test tube filled with 25ml of
tap water, equipped with a side arm for gas sampling and a hole for synthetic air intake (g =19 sccm).

Mass spectrometry measurements were performed by using MBMS (Molecular Beam Mass
Spectrometer) HIDEN HPR60. To ensure the formation of a molecular beam, the geometry of the
MBMS HPR60 system consists of a centralized combination of the orifice, conel, and cone2 (P1vacuum
section is formed between the orifice and conel, P2 vacuum section is formed between conel and
cone2, and P3 vacuum sectionis formed after cone2 in the region of the mass analyzer). The orifice
had an opening diameter of 0.1 mm, conel @0.4 mm, and cone2 @1 mm, accompanied by the
following voltages for DBD setups (the orifice was grounded, Vconel = 0 Vand Vcone2 =0 V).

During all experiments for DBD setups, the regions within the vacuum section of the mass
spectrometer responsible for generating the pressure gradient had the following pressure values:
P, =3.3-101 Torr, P, = 7.5:10° Torr, and P; = 2.4-107 Torr. To identify the species of interest, we first
recorded the mass spectra of neutrals (0—100 amu) using the RGA (Residual Gas Analyzer) mode,
during which the ionization chamber was active. Within the ionization chamber, the electron emission
current fromthe filamentwas forDBD1=5 pA and forDBD2 =10 pA. In both cases, the electronenergy
was 70 eV.

After that, we used MID-scan to monitor the temporal changes of selected species for different
formation conditions: without plasma, with plasma at specific applied powers for DBD1 (5W and 15W)
and DBD2 (15W), with Swagelok open, and with swagelok closed. Swagelok open represents the sum
of foreground andbackgroundspecies, while swagelok closed corresponds to backgroundspecies only.

3. Results and discussion
In this study, we have measured the neutrals mass spectra by using a mass spectrometer for two
different configurations of Dielectric Barrier Discharge (DBD) system. In both configurations, titled
DBD1 and DBD2, discharge was in contact with water during mass spectrometry measurements. The
analysis of neutral species was performed in two different measurement modes of HPR60: RGA mode
forneutral mass spectraand MID-scan mode fortrackin time changes of specific neutral species. These
modes provide a comprehensive overview of the ionization processes and chemical compositions
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present in the plasma generated by each DBD system. The neutral mass spectra revealed the types
and relative concentrations of neutral species, the MID-scan measurement provided insight into the
temporal evolution of these species.

a) b)
107 T 107 g
I Neutrals mass spectra I Neutrals mass spectra
Plasma ON - Plasma OFF (Plasma ON-Plasma OFF) SL open
10°5 [ Piasma on (5w, sss ki) N E 10° 4 H,0 E
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Fig. 2. Neutral mass spectra for a) DBD1 setting and b) DBD2 setting at an operating frequency of
33.6kHz. In the case of the DBD2, an airflow of 19sccm was added. The graphs were obtained by
passing the raw results through a MatlLab script to integrate the obtained lines for specific mass
number.

Figure 2(a) and (b) present Neutral mass spectra for configurations DBD1 and DBD2, respectively. The
presented spectra show the difference of Plasma ON mass spectra and Plasma OFF mass spectra.
Plasma ON/OFF mass spectra represent the foreground signal i.e. the difference of total signal
(swagelok open) and background signal (swagelok closed). The spectra in Figure 2 clearly show that
the dominant species in the discharge are nitrogen and oxygen compounds (N, O,, H,0,, N,0, H, H,0)
which is to be expected because it is a discharge at atmospheric pressure where the targetis water.
Atomic nitrogen and atomic oxygen are present as a result of plasma reactions, along with the NO
radical. The OH radical is also present, resulting from both plasma reactions and water dissociationin
the MBMS. In Figure 2(b), water clusters can also be observed at mass numbers 53, 73 and 91, which
appear in neutral mass spectra due to water vapor from the bottle containing the discharge. The high
humidity in the DBD2 configuration and the plasma conditions promote cluster formation unlike in the
case of DBD1 configuration where we did not detect any water clusters of mass above 50 amu.

While the mass spectra results provided an overall view of the main species present in the discharge
chamber, nitrogen oxides and ozone can impact the industrial environment even at much lower
concentrations (below the detection limit of the mass spectra used). Therefore, more sensitive
measurements were conducted specifically for the important species NO, NO,, N,0O, and Os, as
represented here. It was recorded for different conditions, Plasma ON and OFF with background only
(BG), as well as Plasma ON and OFF with foreground and background (FG+BG). Unlike the case of BG,
where only the inner part of the MS is considered in the measurement, in the case of FG+BG, the mass
spectrometer is open so outside ambient air is also evaluated.
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Fig. 3. The mid-scan provides constant tracking of selected species, with different stages of the
experiment marked by labels: plasma on and off, foreground (FG) and background (BG); (a) DBD1 Setup,
ionization filament current setto 5 pAat 70 eV, and (b) DBD2 Setup, ionization filament current set to
50pAat 70 eV.

The MID-scanfor DBD1 setup (Figure 3(a) starts with Plasma OFF and swagelock open (1% minute),
both the foreground (outside the spectrometer) and background are measured. The discharge is
ignited in minute 1 and swagelok is open. Here we can see that NO continues to decrease slightly, NO,
remains constant, and Os increases, indicating plasma-driven production of Os. After the 3" minute,
with the plasma still on but swagelock closed, all species (NO, NO,, and Os) decrease as expected (only
background inside device is measured).

The Figure 3(b) shows MID-scan spectra for DBD2 configuration. Inthe first three minutes, with the
plasma off and the swagelock closed, only the background signal is measured. After opening of the
swagelok (3-6 minutes), the increase in NO and NO, suggests the influence of ambient air, while O3
remains unchanged. Between 6 and 11 minutes, with the plasma on and the swagelok open, NO and
NO;, rise slightly, but Os increases significantly, indicating plasma-driven O; production. Finally, from
11t minute, with the plasma on and the swagelok closed, all species decrease due to limited external
interaction (only background is measured).

4. Conclusion
Mass spectrometry analysis of two setups of a DBD source with a water electrode, generated at
atmospheric pressure was performed. Despite the difference in the water vessel used in each setup,
in both setups similar trends in the behavior of reactive species were shown, indicating strong
influence of plasma on water target. In both cases, plasma activation leads to the generation of
reactive oxygen and nitrogen species, such as NO, NO,, CO,, and O3, with notable increases in O3
concentrationwhenthe plasmais on. Differencesinthe watervessel may affect the plasma’s efficiency
in producing reactive species, but both setups demonstrate that the plasma’s interaction with the
wateris crucial for modulating the levels of reactive species. These findings highlight the importance
of the plasma-water system in applications such as water treatment and agriculture, where reactive
species generated in plasma-activated water could have significant biological and chemical effects.
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