Publications

Selected publication  

Janda M., Martišovitš V., Hensel K., Machala Z.: Generation of antimicrobial NOx by atmospheric air transient spark discharge, Plasma Chem. Plasma Proc. 36 (3), 767-781 (2016).
citations: 77  

Abstract

Atmospheric pressure air plasma discharges generate potential antimicrobial agents, such as nitrogen oxides and ozone. Generation of nitrogen oxides was studied in a DC-driven self-pulsing (1-10 kHz) transient spark (TS) discharge. The precursors of NOx production and the TS characteristics were studied by nanosecond time-resolved optical diagnostics: a photomultiplier module and a spectrometer coupled with fast intensified camera. Thanks to the short (~10-100 ns) high current (>1 A) spark current pulses, highly reactive non-equilibrium plasma is generated. Ozone was not detectable in the TS, probably due to higher gas temperature after the short spark current pulses, but the NOx production rate of ~7×1016 molecules/J was achieved. The NO2/NO ratio decreased with increasing TS repetition frequency, which is related to the complex frequency-dependent discharge properties and thus changing NO2/NO generating mechanisms. Further optimization of NO2 and NO production to improve the biomedical and antimicrobial effects is possible by modifying the electric circuit generating the TS discharge.