Search:  

Division of Environmental Physics - User: igor
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava


Measurement of the Electron Density in Transient Spark Discharge

Janda M., Martišovitš V., Dvonč L., Hensel K., Machala Z.
Plasma Sources Sci. Technol. 23, 065016 (2014)

download  


Abstract:

This paper presents our measurements of the electron density in a streamer-to-spark transition discharge, which is named transient spark (TS), in atmospheric pressure air. Despite the dc
applied voltage, TS has a pulsed character with short (∼10–100 ns) high current (>1 A) pulses, with a repetition frequency on the order of kHz. The electron density n_e ∼ 10^17 cm−3 at maximum is reached in TS with repetition frequencies below ∼3 kHz, using relatively low
power delivered to the plasma (0.2–3 W).
The temporal evolution of n_e was estimated from the resistance of the plasma discharge, which was obtained by a detailed analysis of the electric circuit representing the TS and the
discharge diameter measurements using a fast intensified charge-coupled device (iCCD) camera. This estimate was compared with n e calculated from the measured Stark broadening of several atomic lines: Hα , N at 746 nm, and O triplet at 777 nm. Good agreement was
obtained, although the method based on the plasma resistance is sensitive to an accurate determination of the discharge diameter. We have found that this method is also limited for strongly ionized plasmas. On the other hand, a lower n_e detection limit can be obtained by this
method than from the Stark broadening of atomic lines.


Citations:

1.)F. P. Sainct, K. Urabe, E. Pannier, D. A. Lacoste, C. O. Laux: Electron number density measurements in nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure, Plasma Sources Sci. Technol. 29 (2), 025017 (2020), citation no. 14, WoS
(2020)
-------------
2.)J. Miles, C. Murray, A. Ross, K. Lemmer, J. Russell, S. Adams: Time resolved electron density and temperature measurements via Thomson scattering in an atmospheric nanosecond pulsed discharge, Plasma Sources Sci. Technol. 29 (7), 07LT02 (2020), citation no. 12, WoS
(2020)
-------------
3.)X. C. Chen, Y. F. Zhu, Y. Wu: Modeling of streamer-to-spark transitions in the first pulse and the post discharge stage, Plasma Sources Sci. Technol. 29 (9), 095006, (2020), citation no. 15, WoS
(2020)
-------------
4.)X. Zhang, C. Bo, D. Xi, Z. Fang, Z. Feng, S. Yang: Liquefaction of biomass by plasma electrolysis in alkaline condition, Renewable Energy 165 , 174-181 (2020), citation no. 39, WoS
(2020)
-------------
5.)H. Sun, S. Zhang, W. Han, Y. Gao, R. Wang, T. Shao: An experimental investigation of nanosecond pulsed spark discharge for high-efficient methane conversion, Trans. China Electrotechnical Soc. 34 (4) 880-888 (2019), SCOPUS
(2019)
-------------
6.)D.D. Knight: Energy Deposition for High-Speed Flow Control, Cambridge University Press (2019)
(2019)
-------------
7.)S. Wang, F. Liu, D. Yang, W. Wang, Z. Fang: Characteristic study of a transient spark driven by a nanosecond pulse power in atmospheric nitrogen using a water cathode, J. Appl. Phys. 125, 043304 (2019), citation no. 41, WoS
(2019)
-------------
8.)Ch. Rose, S. G. Patel, S. Simpson, A. P. Yalin: Preliminary Schlieren and Optical Emission Diagnostics of a High-Voltage Laser Triggered Switch, AIAA Aviation 2019 Forum (2019)
(2019)
-------------
9.)A. Brisset, A. Sobota, P. Tardiveau: Spatio-temporal measurements of the electronic density in a diffuse corona discharge under extreme voltage conditions, 24th International Symposium on Plasma Chemistry ISPC, Napoli (Italy), June 9-14 (2019), citation no. 9
(2019)
-------------
10.)T. Zarei, D. Dorranian: Investigating the Optimized Physical and Electrical Operating Condition of DC Pulsed Spark Discharge Over Water Surface Generated by Different Input Parameters, IEEE Trans. Plasma Sci. 47, 3949-3959 (2019), citation no. 20, INDEX
(2019)
-------------
11.)Y. Ruan, J. Li, B. Peng, H. Guo, X. Yao, N. Jiang, Y. Wu: Characteristics of pulsed streamer discharge with MgO cathode and enhanced toluene degradation, Vacuum 169, 108840 (2019), citation no. 35, INDEX
(2019)
-------------
12.)Q. Huang, B. Hu, L. Yang, L. Chen, Y. Shi, W. Zhong: Dynamic Characteristics of the Spark Channel Plasma in Nitrogen Trigatron Investigated by the Laser Mach–Zehnder Interferometer, IEEE Trans. Plasma Sci. 47 (10) 8844994 (2019), citation no. 11, WoS, SCOPUS
(2019)
-------------
13.)T. Orriere, E. Moreau, D.Z. Pai: Electric wind generation by nanosecond repetitively pulsed microplasmas, J. Phys. D Appl. Phys. 52 (46) 464002 (2019), citation Janda, WoS
(2019)
-------------
14.)A. Brisset: Physique des décharges nanosecondes diffuses générées sous champs extrêmes, PhD thesis, Université Paris Saclay, Paris (France), citation no. 115 (2019)
(2019)
-------------
15.)N. Cvetanović, O. Galmiz, P. Synek, M. Zemánek, A. Brablec, T. Hoder: Electron density in surface barrier discharge emerging at argon/water interface: Quantification for streamers and leaders, Plasma Sources Sci. Technol. 27(2), 025002 (2018), citation no. 11, SCOPUS
(2018)
-------------
16.)T. Gerling, A. Helmke, K.-D. Weltmann: Relevant Plasma Parameters for Certification, In book: Comprehensive Clinical Plasma Medicine, Publisher: Springer, 43-70, citation no. 72, SCOPUS
(2018)
-------------
17.)M. D. G. Evans: Pulsed plasma generator development and low-temperature plasma-assisted combustion at atmospheric pressure, PhD Thesis, McGill University, Montréal (Canada), citation no. 76 (2018)
(2018)
-------------
18.)X. Pei, J. Kredl, X. P. Lu, J. F. Kolb: Discharge modes of atmospheric pressure DC plasma jets operated with air or nitrogen, J. Phys. D. Appl. Phys. 51 (38), 384001 (2018), citation no. 40, WoS/SCOPUS
(2018)
-------------
19.)T. Orrière, E. Moreau, D. Z. Pai: Ionization and recombination in nanosecond repetitively pulsed microplasmas in air at atmospheric pressure, J. Phys. D: Appl. Phys. 51 (49) 494002, (2018), citation no. 16, WoS
(2018)
-------------
20.)S. Li, J. A. M. Jimenez, V. Hessel, F. Gallucci: Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review, Processes 2018, 6 (12), 248 (2018), citation no. 75, WoS/SCOPUS
(2018)
-------------
21.)S. Wu, W. Cheng, G. Huang, F. Wu, Ch. Liu, X. Liu, Ch. Zhang, X. Lu, Positive streamer corona, single filament, transient glow, dc glow, spark, and their transitions in atmospheric air, Phys. Plasmas 25, 123507 (2018), citation no. 27, SCOPUS
(2018)
-------------
22.)T. Orriere: Confinement micrométrique des décharges pulsées nanosecondes dans l'air à pression atmosphérique et effets électro-aérodynamiques, PhD thesis, Univesity of Poitiers (France), (2018)
(2018)
-------------
23.)J. Vorac, P. Synek, V. Prochazka, T. Hoder: State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface, J. Phys. D. Appl. Phys. 50 (29), 294002 (2017), citation no. 11, WoS/SCOPUS
(2017)
-------------
24.)P. Hoffer, Y. Sugiyama, S.H.R. Hosseini, H. Akiyama, P. Lukeš, M. Akiyama: Characteristics of meter-scale surface electrical discharge propagating along water surface at atmospheric pressure, J. Phys. D: Appl. Phys. 49 (2016) 415202, citation no. 36, WoS/SCOPUS
(2016)
-------------
25.)M. D. G. Evans, F. P. Sainct, F. Aristizabal, J. M. Bergthorson, S. Coulombe: Development of a nanosecond pulsed HV atmospheric pressure plasma source: preliminary assessment of its electrical characteristics and degree of thermal nonequilibrium, J. Phys. D: Appl. Phys. 48, 255203 (2015), citation no. 20, WoS/SCOPUS
(2015)
-------------


HOME
STAFF
RESEARCH
PUBLICATIONS
STUDENTS
LINKS
CONTACT

PhD opportunities



 

User: igor

Logout