Search:  

Division of Environmental Physics - User: veronika
Faculty of Mathematics, Physics and Informatics, Comenius University Bratislava


Chemical and antibacterial effects of plasma activated water: Correlation with gaseous and aqueous reactive oxygen and nitrogen Species, Plasma Sources and Air Flow Conditions

Machala Z., Tarabová B., Sersenová D., Janda M., Hensel K.
J. Phys. D: Appl. Phys. 52 (3), 034002 (2019)

download  


Abstract:

Cold atmospheric plasma operating in contact with water and biological media induce antimicrobial or antitumor effects and represent a great potential for applications in biomedicine and agriculture. The need of control and tunability of the chemical composition and biomedical effects of plasma activated water/media (PAW/PAM) is emerging. By comparing two non-thermal air plasma sources: streamer corona and transient spark, interacting with water in open and closed reactors and by enhancing the plasma-liquid interaction by water electrospray through these discharges, we demonstrate that the plasma gaseous products strongly depend on the discharge regime, its deposited power and gas flow conditions. Streamer corona leads dominantly to the formation of ozone and hydrogen peroxide, while more energetic transient spark leads to nitrogen oxides and hydrogen peroxide. The gaseous products then determine the chemical properties of the PAW and the dominant aqueous reactive oxygen and nitrogen species (RONS). Production of hydrogen peroxide depends on water evaporation and hydroxyl radical formation that is determined by the discharge power. Transient spark produces higher concentrations of gaseous and aqueous RONS and induces stronger antibacterial effects than streamer corona; however, the RONS production rates per Joule of deposited energy are comparable for both studied discharge regimes. The net production rate per Joule of gaseous nitrogen oxides strongly correlates with that of aqueous nitrites and nitrates. Antibacterial effects of the PAW tested on E. coli bacteria are determined by the aqueous RONS: in the lower power streamer corona mainly by the dissolved ozone and hydrogen peroxide, in the higher power transient spark by the combination of hydrogen peroxide, nitrite and acidic pH, while in transient spark in the closed reactor by acidified nitrites.


Citations:

1.)X. Liao, D. Liu, S. Chen, X. Ye, T. Ding: Degradation of antibiotic resistance contaminants in wastewater by atmospheric cold plasma: kinetics and mechanisms, Environ. Technol. 42(1), 58-71 (2021), citation no. 42, WoS
(2021)
-------------
2.)A. Mai-Prochnow, D. Alam , R. Zhou, T. Zhang, K. (Ken) Ostrikov, P. J. Cullen: Microbial decontamination of chicken using atmospheric plasma bubbles, Plasma Process. Polym. 18 (1), 2000052 (2020), citation no. 44, INDEX
(2021)
-------------
3.)S. Siadati, M. Pet'kova, A.J. Kenari, S. Kyzek, E. Galova, A. Zahoranova: Effect of a non-thermal atmospheric pressure plasma jet on four different yeasts, J. Phys. D. 54(2), 025204 (2021), citation no. X, WoS
(2021)
-------------
4.)Z. Liu, Y. Gao, D. Liu, B. Pang, S. Wang: Dynamic analysis of absorbance behavior and peak shift of RONS in plasma-activated water by UV absorption spectroscopy: dependency on gas impurity, pulse polarity, and solution pH, J. Phys. D. 54(1) 015202 (2020), citation no. X, WoS
(2021)
-------------
5.)K. Liu, W. Ren, C. Ran, R. Zhou, W. Tang et al: Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: effects of gas flow on chemical reactions, J. Phys. D. Appl. Phys. 54 (6), 065201 (2021), citation no. 39, WoS
(2021)
-------------
6.)H. Noori, J. Raud, R. Talviste, I. Jogi: Water Dissolution of Nitrogen Oxides Produced by Ozone Oxidation of Nitric Oxide, Ozone-science & Engineering xxx (2021), citation no. 29, WoS
(2021)
-------------
7.)A. Soni, J. Choi, G. Brightwell: Plasma-Activated Water (PAW) as a Disinfection Technology for Bacterial Inactivation with a Focus on Fruit and Vegetables, Foods 10, 166 (2021), citation no. 44, WoS
(2021)
-------------
8.)Y. Morabit, M. I. Hasan, R. D. Whalley, E. Robert, M. Modic, J, L. Walsh: A review of the gas and liquid phase interactions in low-temperature plasma jets used for biomedical applications, Eur. Phys. J. D. 75, 32 (2021), citation no. 150, WoS
(2021)
-------------
9.)W. J. Ning, J. Lai, J. Kruszelnicki, J. E. Foster, D. Dai, M. J. Kushner: Propagation of positive discharges in an air bubble having an embedded water droplet; Plasma Sources Sci. Technol. 30 (1), 015005 (2021), citation no. X, WoS
(2021)
-------------
10.)Z. Kelar Tučeková, L. Vacek, R. Krumpolec, J. Kelar, M. Zemánek, M. Černák, F. Ružička: Multi-Hollow Surface Dielectric Barrier Discharge for Bacterial Biofilm Decontamination, Molecules 26, 910 (2021), citation no. 58, WoS
(2021)
-------------
11.)B. Machado-Moreira, B. K. Tiwari, K. G. Richards, F. Abram, C. M. Burgess: Application of plasma activated water for decontamination of alfalfa and mung bean seeds, Food Microbiology 96, 103708 (2021), citation no. X, INDEX
(2021)
-------------
12.)D. Yang, X. F. Zhou, J. P. Liang, Q . Xu, H. Wang, K .Yang: Degradation of methylene blue in liquid using high voltage pulsed discharge plasma synergizing iron-based catalysts activated persulfate, J. Phys. D. Appl. Phys. X, xxx (2021), citation no. X, INDEX
(2021)
-------------
13.)L. Lin, H.Q. Pho, L. Zong, S. Li, N. Pourali, E. Rebrov, N. N. Tran, K. (Ken) Ostrikov, V. Hessel: Microfluidic plasmas: Novel technique for chemistry and chemical engineering, Chem. Engineer. J. X, xxx (2021), citation no. X, INDEX
(2021)
-------------
14.)S. Dong, L. Fan, Y. Ma, J. Du, Q. Xiang: Inactivation of polyphenol oxidase by dielectric barrier discharge (DBD) plasma: Kinetics and mechanisms, LWT - Food Sci. Technol. X, xxx (2021), citation no. X, INDEX
(2021)
-------------
15.)J. Tan, M.V. Karwe: Inactivation and removal of Enterobacter aerogenes biofilm in a model piping system using plasma-activated water (PAW), Innovative Food Sci. Emerging Technol. X, xxx (2021), citation no. X, INDEX
(2021)
-------------
16.)K. Kutasi, N. Krstulovic, A. Jurov, K. Salamon, D. Popović, S. Milošević: Controlling the composition of plasma-activated water by Cu ions, Plasma Sources Sci. Technol. X, xxx (2021), citation no. 10, INDEX
(2021)
-------------
17.)T. C. Huang, Y. T. Lai, P. H. Kuo, S. Y. Hsu, J. G. Duh: Activation of soy waste solution through plasma treatment, MRS Advances X, xxx (2021), citation no. 22, WoS
(2021)
-------------
18.)V. M. Gómez-López, G. Pataro, B. Tiwari, M. Gozzi, M. Á. A. Meireles, S. Wang, B. Guamis, Z. Pan, H. Ramaswamy, S. Sastry, F. Kuntz, P. J. Cullen, S. K. Vidyarthi, B. Ling, J. M. Quevedo, A. Strasser, G. Vignali, P. C. Veggi, R. Gervilla, H. M. Kotilainen, M. Pelacci,J. Viganó, A. Morata: Guidelines on reporting treatment conditions for emerging technologies in food processing X, xxx (2021), citation no. X, INDEX
(2021)
-------------
19.)R. Yu, Z. Liu, J. Lin, X. He, L. Liu, Q. Xiong, Q. Chen, K. Ostrikov: Colorimetric quantification of aqueous hydrogen peroxide in the DC plasma-liquid system, Plasma Sci. Technol. X, xxx (2021), citation no. 46, INDEX
(2021)
-------------
20.)K. Tachibana, J-S. Oh, T. Nakamura: Oxidation processes of NO for production of reactive nitrogen species in plasma activated water, J. Phys. D. Appl. Phys. 53(38), 385202 (2020), citation no. 55, WoS
(2020)
-------------
21.)S. Wang, D. Z. Yang, R. Zhou , Z. Fang , W. Wang, K. Ostrikov: Mode transition and plasma characteristics of nanosecond pulse gas–liquid discharge: Effect of grounding configuration, Plasma Process. Polym. 17, e1900146 (2020), citation 23, WoS
(2020)
-------------
22.)K. H. Baek, H. I. Yong, J H Yoo, J. W. Kim, Y. S. Byeon, J. Lim, S. Y. Yoon, S. Ryu, C. Jo: Antimicrobial effects and mechanism of plasma activated fine droplets produced from arc discharge plasma on planktonic Listeria monocytogenes and Escherichia coli O157:H7, J. Phys. D. Appl. Phys. 53 124002 (2020), citation 18, WoS
(2020)
-------------
23.)V. Gamaleev, N. Iwata , G. Ito, M. Hori, M. Hiramatsu, M. Ito: Scalable Treatment of Flowing Organic Liquids Using Ambient-Air Glow Discharge for Agricultural Applications, Appl. Sci. 10, 801 (2020), citation no. 16, WoS
(2020)
-------------
24.)Y. Zhao, S. Ojha, C. M. Burgess, D. Sun, B. K. Tiwari: Influence of Various Fish Constituents on Inactivation Efficacy of Plasma Activated Water, Int. J. Food Sci. Technol. X, xxx (2020), citation Machala, INDEX
(2020)
-------------
25.)A. Bisag, C. Bucci, S. Coluccelli, G. Girolimetti, R. Laurita, P. De Iaco, A. M. Perrone, M. Gherardi, L. Marchio, A. M. Porcelli, V. Colombo, G. Gasparre: Plasma-activated Ringer’s Lactate Solution Displays a Selective Cytotoxic Effect on Ovarian Cancer Cells, Cancers 12, 476 (2020), citation no. 38, WoS
(2020)
-------------
26.)B. Maršálek, E. Maršálková, K. Odehnalová, F. Pochylý, P. Rudolf, P. Stahel, J. Rahel, J. Cech, S. Fialová. S. Zezulka: Removal of Microcystis aeruginosa through the Combined Effect of Plasma Discharge and Hydrodynamic Cavitation, Water 12, 8 (2020), citation no. 23, WoS
(2020)
-------------
27.)Z. Xu, X. Zhou, W. Yang, Y. Zhang, Z. Ye, S. Hu, C. Ye, Y. Li, Y. Lan, J. Shen, X. Ye, F. Yang, C. Cheng: In vitro antimicrobial effects and mechanism of air plasma‐activated water on Staphylococcus aureus biofilms, Plasma Process. Polym. X, xxx (2020), citation no. 52, INDEX
(2020)
-------------
28.)K. Liu, Z. Yang, S. Liu: Study of the Characteristics of DC Multineedle-to-Water Plasma-Activated Water and Its Germination Inhibition Efficiency: The Effect of Discharge Mode and Gas Flow, IEEE Trans. Plasma Sci. 48 (4), 969 - 979 (2020), citation no. 10, WoS
(2020)
-------------
29.)V. Gamaleev, T. Tsutsumi, M. Hiramatsu, M. Ito. M. Hori: Generation and Diagnostics of Ambient Air Glow\r\nDischarge in Centimeter-Order Gaps, IEEE Access 8, 72607–72619 (2020), citation no. 22, WoS
(2020)
-------------
30.)Y.-M. Zhao, S. Ojha, C. M. Burgess, D.-W. Sun, B. K Tiwari: Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state, J. Appl. Microbio. X, xxx (2020), citation Machala, INDEX
(2020)
-------------
31.)S. Ma, W. Yan, Z. Bi, Z. Wang, Y. Song, D. Wang: Influence of water vapor concentration on discharge dynamics and reaction products of underwater discharge within a He/H2O-filled bubble at atmospheric pressure, Plasma Sci. Technol. 22 (8), 85406 (2020), citation no. 7, WoS
(2020)
-------------
32.)L. Gao, X. Shi, X. Wu: Applications and challenges of low temperature plasma in pharmaceutical field, J. Pharmaceutical Analys. 11 (1), 28-36 (2020), citation no. 88, WoS
(2020)
-------------
33.)P. Seyfi, A. Khademi, S. Ghasemi, A. Farhadizadeh, H. Ghomi: The effect of mixed electric field on characteristic of Ar-N-2 plasma jets for TiN surface treatment, J. Phys. D. Appl. Phys. 53 (12)125201 (2020), citation no. 26, WoS
(2020)
-------------
34.)A. Filipić, I. Gutierrez-Aguirre, G. Primc, M. Mozetič, D. Dobnik: Cold Plasma, a New Hope in the Field of Virus Inactivation, Trends in Biotechnology 38(11), 1278-1291 (2020), citation no. 65, WoS
(2020)
-------------
35.)E. Feizollahi, B. Iqdiam,T. Vasanthan, M. S. Thilakarathna, M. S. Roopesh: Effects of Atmospheric-Pressure Cold Plasma Treatment on Deoxynivalenol Degradation, Quality Parameters, and Germination of Barley Grains, Appl. Sci. 10 (10), 3530 (2020), citation no. 37, WoS
(2020)
-------------
36.)E. V. Sysolyatina, A. Y. Lavrikova , R. A. Loleyt , E. V. Vasilieva, M. A. Abdulkadieva, S. A. Ermolaeva, A. V. Sofronov: Bidirectional mass transfer‐based generation of plasma‐activated water mist with antibacterial properties, Plasma Process. Polym. X, xxx-xxx (2020), citation no. 52, INDEX
(2020)
-------------
37.)J.-P. Liang, Z.-L. Zhao, X.-F. Zhou, D.-Z. Yang, H. Yuan, W.-C. Wang, J.-J. Qiao: Comparison of gas phase discharge and gas-liquid discharge for water activation and methylene blue degradation, Vacuum 181, 109644 (2020), citation no. 30, WoS
(2020)
-------------
38.)I. C. Gerber, I. Mihaila, V. Pohoata, I. Topala: Evolution of Electrical and Optical Parameters of a Helium Plasma Jet in Interaction With Liquids, IEEE Trans. Plasma Sci. X, xxx-xxx (2020), citation no. 36, INDEX
(2020)
-------------
39.)P. Ranieri, N. Sponsel, J. Kizer, M. Rojas‐Pierce, R. Hernández, L. Gatiboni, A. Grunden, K. Stapelmann: Plasma agriculture: Review from the perspective of the plant and its ecosystem, Plasma Process. Polym. X, e2000162 (2020), citation no. 167, WoS
(2020)
-------------
40.)S. Wang, Y. Liu, R. Zhou, F. Liu, Z. Fang, K. (Ken) Ostrikov, P. J. Cullen: Microsecond pulse gas–liquid discharges in atmospheric nitrogen and oxygen: Discharge mode, stability, and plasma characteristics, Plasma Process. Polym. X, e2000135 (2020), citation no. 27, WoS
(2020)
-------------
41.)Y. M. Zhao, A. Patange, D. W. Sun, B. Tiwari: Plasma‐activated water: Physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry, Compr. Rev. Food Sci. Food Safety 19(6), 3951-3979 (2020), citation Machala, WoS
(2020)
-------------
42.)B. Yadav, M. S. Roopesh: In-package atmospheric cold plasma inactivation of Salmonella in freeze-dried pet foods: Effect of inoculum population, water activity, and storage, Innovative Food Sci. Emerg. Technol. 66, 102543 (2020), citation Machala, WoS
(2020)
-------------
43.)H. Akiyama, M. Akiyama: Pulsed Discharge Plasmas in Contact with Water and their Application, IEEJ Trans. Electr. Electron. Engineer. 16(1), 6-14 (2020), citation no. 19, WoS
(2020)
-------------
44.)K. H. Baek, Y. S Heo, J. Y. Park,T. Kang ,Y. E. Lee, J. Lim, S. B. Kim, C. Jo: Inactivation of Salmonella Typhimurium by Non-Thermal Plasma Bubbles: Exploring the Key Reactive Species and the Influence of Organic Matter, Foods 9 (11), 1689 (2020) citation no. 19, WoS
(2020)
-------------
45.)J. Čech, P. St’ahel, J. Ráhel’, L. Prokeš, P. Rudolf, E. Maršálková, B. Maršálek: Mass Production of Plasma Activated Water: Case Studies of Its Biocidal Effect on Algae and Cyanobacteria, Water 12 (11), 3167 (2020), citation no. 3, INDEX
(2020)
-------------
46.)P. Seyfi , A. Heidari , A. Khademi , M. Golghand , M. Gharavi , H. Ghomi: The effect of modulated electric field on characteristic of SDBD‐like plasma jet for surface modification, Contrib. Plasma Phys. X, e202000155 (2020), citation no. 16, WoS
(2020)
-------------
47.)T. Liu, Y. Zeng , J. Chen, D. Wei, Q. Zeng, Y. Fu, Y. Fu, F. Yang, F. Feng: Acinetobacter Baumannii Sterilization Using DC Corona Discharge, IEEE Trans. Plasma Sci. 49 (1), 317-325 (2020), citation no. 16, WoS
(2020)
-------------
48.)M. Kchaou, K. Abuhasel, M. Khadr, F. Hosni, M. Alquraish: Surface Disinfection to Protect against Microorganisms: Overview of Traditional Methods and Issues of Emergent Nanotechnologies, Appl. Sci. 10 (17), 6040 (2020), citation no. X, WoS
(2020)
-------------
49.)N. Popov, N. Babaeva, G. Naidis: Recent advances in the chemical kinetics of non-equilibrium plasmas, J. Phys. D: Appl. Phys. 52 (16), 160301 (2019), citation no. 12, INDEX
(2019)
-------------
50.)J. P. Liang, X. F. Zhou, Z. L. Zhao, W. C. Wang, D. Z. Yang, H. Yuan: Reactive oxygen and nitrogen species in Ar + N-2 thorn O-2 atmospheric-pressure nanosecond pulsed plasmas in contact with liquid, Phys. Plasmas 26 (2), 023521 (2019), citation no. 27, WoS
(2019)
-------------
51.)Z. Liu, W. Wang, D. Liu, C. Zhou, T. He, W. Xia, M. G. Kong: Experimental investigation of behavior of bullets dynamics and production of RONS in helium APPJs-liquid interaction: The effect of additive gas components, Phys. Plasmas 26, 053507 (2019), citation no. 12, WoS
(2019)
-------------
52.)F. Girard-Sahun, V. Badets, P. Lefrancois, N. Sojic, F. Clement, S. Arbault: Reactive oxygen species generated by cold atmospheric plasmas in aqueous solution: successful electrochemical monitoring in situ under a high voltage system, Analyt. Chem. 91 (13), 8002-8007 (2019), citation no. 7, WoS
(2019)
-------------
53.)A. Wright, B. Uprety, A. Shaw, G. Shama, F. Iza, H. Bandulasena: Effect of humic acid on E. coli disinfection in a microbubble-gas plasma reactor, J. Water Process Engineer. 31, 100881 (2019), citation no. 30, INDEX
(2019)
-------------
54.)R. Peverall, G. A. D. Ritchie: Spectroscopy techniques and the measurement of molecular radical densities in atmospheric pressure plasmas, Plasma Source Sci. Technol. 28, 073002 (2019), citation no. 61, WoS
(2019)
-------------
55.)V. Gamaleev, N. Iwata, M. Hori, M. Hiramatsu, M. Ito: Direct Treatment of Liquids Using Low-Current Arc in Ambient Air for Biomedical Applications, Appl. Sci. 9 (17), 3505 (2019), citation no. 51, INDEX
(2019)
-------------
56.)C. Labay, I. Hamouda, F. Tampieri, M.-P. Ginebra, C. Canal: Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies, Sci. Reports 9, 16160 (2019), citation no. 35, WoS
(2019)
-------------
57.)R. Talviste, S. Raud, I. Jogi, T. Plank, J. Raud, T. Teesalu: Investigation of a He micro plasma-jet utilized for treatment of prostatecancer cells, Plasma Res. Express 1, 045002 (2019), citation no. 38, INDEX
(2019)
-------------
58.)J. Cheng, Q. Chen, G. Fridman, H.-F. Ji: A colorimetric method for comparison of oxidative strength of DBD plasma, Sensors and Actuators Reports 1, 100001 (2019), citation nol 19, WoS
(2019)
-------------
59.)K. Tachibana, T. Nakamura: Comparative study of discharge schemes for production rates and ratios of reactive oxygen and nitrogen species in plasma activated water, J. Phys. D: Appl. Phys. 52 (38) 385202 (2019), citation no. 28, WoS
(2019)
-------------


HOME
STAFF
RESEARCH
PUBLICATIONS
STUDENTS
LINKS
CONTACT

PhD opportunities



 

User: veronika

Logout